Solving |A| in Linear Algebra Homework

cleopatra
Messages
45
Reaction score
0

Homework Statement



A=(1,2,3; 3,2,3; 5,4,1) (A is a matrix)

How do you find |A| ?? (It´s supposed to be one number)

I´ve tried everything ...
 
Physics news on Phys.org
you're trying to find the determinant...

what have you tried
 
please just help me i´m so tired :(
 
nevermind i got it
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top