twoflower
- 363
- 0
Hi all, I've been fighting with this limit:
<br /> \lim_{n \rightarrow \infty} \left( \frac{1}{2} + \frac{3}{2^2} + \frac{5}{2^3} + \frac{7}{2^4} + ... + \frac{2n - 1}{2^n} \right)<br />
What I did so far:
<br /> <br /> \lim_{n \rightarrow \infty} \left( \frac{1}{2} + \frac{3}{2^2} + \frac{5}{2^3} + \frac{7}{2^4} + ... + \frac{2n - 1}{2^n} \right)<br /> = \\<br /> \lim_{n \rightarrow \infty} \left( \frac{1}{2} \left( 1 + \frac{3}{2} + \frac{5}{2^2} + \frac{7}{2^3} + ... + \frac{2n - 1}{2^{n-1}} \right) \right)<br /> = \\<br /> \frac{1}{2} \lim_{n \rightarrow \infty} \left( 1 + \frac{3}{2} + \frac{5}{2^2} + \frac{7}{2^3} + ... + \frac{2n - 1}{2^{n-1}} \right)<br />
<br /> \\<br /> = \frac{1}{2} \lim_{n \rightarrow \infty} \left( 1 + \frac{1}{2} \left( 3 + \frac{5}{2} + \frac{7}{2^2} + ... + \frac{2n - 1}{2^{n-2}} \right) \right)<br /> = \frac{1}{2} \left( \lim_{n \rightarrow \infty} 1 + \frac{1}{2} \lim_{n \rightarrow \infty} \left( 3 + \frac{5}{2} + \frac{7}{2^2} + ... + \frac{2n - 1}{2^{n-2}} \right) \right)<br /> = <br />
<br /> = \frac{1}{2} + \frac{1}{4} \lim_{n \rightarrow \infty} \left( 3 + \frac{5}{2} + \frac{7}{2^2} + ... + \frac{2n - 1}{2^{n-2}} \right) \right)<br /> =<br /> \frac{1}{2} + \frac{1}{4} \lim_{n \rightarrow \infty} \left( 3 \left( 1 + \frac{5}{6} + \frac{7}{12} + \frac{9}{24} + ... + \frac{2n - 1}{3.2^{n-2}} \right) \right)<br />
And with similar adjustments I got this:
<br /> \frac{1}{2} + \frac{3}{4} + \frac{9}{8} \lim_{n \rightarrow \infty} \left( \frac{5}{9} + \frac{7}{18} + \frac{9}{36} + ... + \frac{4n-2}{9.2^{n-2}} \right) \right)<br />
But here I finished
.
Do I have the right approach? And if yes, how to complete it? If not, why?
Thank you for your suggestions.
<br /> \lim_{n \rightarrow \infty} \left( \frac{1}{2} + \frac{3}{2^2} + \frac{5}{2^3} + \frac{7}{2^4} + ... + \frac{2n - 1}{2^n} \right)<br />
What I did so far:
<br /> <br /> \lim_{n \rightarrow \infty} \left( \frac{1}{2} + \frac{3}{2^2} + \frac{5}{2^3} + \frac{7}{2^4} + ... + \frac{2n - 1}{2^n} \right)<br /> = \\<br /> \lim_{n \rightarrow \infty} \left( \frac{1}{2} \left( 1 + \frac{3}{2} + \frac{5}{2^2} + \frac{7}{2^3} + ... + \frac{2n - 1}{2^{n-1}} \right) \right)<br /> = \\<br /> \frac{1}{2} \lim_{n \rightarrow \infty} \left( 1 + \frac{3}{2} + \frac{5}{2^2} + \frac{7}{2^3} + ... + \frac{2n - 1}{2^{n-1}} \right)<br />
<br /> \\<br /> = \frac{1}{2} \lim_{n \rightarrow \infty} \left( 1 + \frac{1}{2} \left( 3 + \frac{5}{2} + \frac{7}{2^2} + ... + \frac{2n - 1}{2^{n-2}} \right) \right)<br /> = \frac{1}{2} \left( \lim_{n \rightarrow \infty} 1 + \frac{1}{2} \lim_{n \rightarrow \infty} \left( 3 + \frac{5}{2} + \frac{7}{2^2} + ... + \frac{2n - 1}{2^{n-2}} \right) \right)<br /> = <br />
<br /> = \frac{1}{2} + \frac{1}{4} \lim_{n \rightarrow \infty} \left( 3 + \frac{5}{2} + \frac{7}{2^2} + ... + \frac{2n - 1}{2^{n-2}} \right) \right)<br /> =<br /> \frac{1}{2} + \frac{1}{4} \lim_{n \rightarrow \infty} \left( 3 \left( 1 + \frac{5}{6} + \frac{7}{12} + \frac{9}{24} + ... + \frac{2n - 1}{3.2^{n-2}} \right) \right)<br />
And with similar adjustments I got this:
<br /> \frac{1}{2} + \frac{3}{4} + \frac{9}{8} \lim_{n \rightarrow \infty} \left( \frac{5}{9} + \frac{7}{18} + \frac{9}{36} + ... + \frac{4n-2}{9.2^{n-2}} \right) \right)<br />
But here I finished

Do I have the right approach? And if yes, how to complete it? If not, why?

Thank you for your suggestions.