Solving a Parabolic Bowl Oscillation Problem

  • Thread starter Thread starter jderm
  • Start date Start date
  • Tags Tags
    Oscillation
jderm
Messages
13
Reaction score
0

Homework Statement



Consider a particle moving back and forth on a frictionless parabolic bowl, y = ax2, where a = 1.460 m-1
If the particle is released from rest at the point on the
bowl at b = 0.43 m, find the period of the oscillations.

I have an equation for velocity(as a function of x). What i was thinking is that i could integrate this from -b to +b, and call this value 'v(x)*d', (it having units of m2/s.
since v=d/t, v(x)*d=d2/t.
thus t=d2/'v(x)*d'.
making the period, T=2*(d2/'v(x)*d'),
where d is the arc length of y(x), from -b to +b.

I realize this may be the least elegant and very possibly "physically incorrect", but it actually gave me a period very close to that obtained by the 'small angle approximation' (however, incorrect)

Can anybody comment on this method?
 
Physics news on Phys.org
i guess the crux of my argument is whether the area under the v(x) curve can be used in this manner, comments?
 
The acceleration and velocity are not at all constant, so the method is, mathematically speaking, completely wrong.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top