Solving A problem using kinematics and Energy

  • Thread starter Thread starter lion_
  • Start date Start date
  • Tags Tags
    Energy Kinematics
AI Thread Summary
A 1.50 kg snowball is launched from a 12.5 m high cliff at an initial velocity of 14.0 m/s at an angle of 41 degrees. The initial calculations using conservation of mechanical energy suggested a final speed of 21 m/s, while kinematic equations indicated a speed of 18.14 m/s. The discussion highlighted the importance of considering both horizontal and vertical components of velocity to accurately determine the final speed upon impact. The final speed was recalculated to be approximately 20.99 m/s by combining the horizontal and vertical components. Understanding the relationship between speed and velocity was crucial for solving the problem correctly.
lion_
Messages
18
Reaction score
0

Homework Statement


A ##1.50## kg snowball is fired from a cliff ##12.5##m high with an initial velocity of ##14.0## m/s, directed ##41^{\circ}## above the horizontal. How fast does the ball travel when it hits the ground.

Homework Equations


##E=K+U##
##V^2_f=v^2_i+2a(y_f-y_i)##
##y_f=v_i \sin \theta-gt^2##

The Attempt at a Solution


First using conservation of mechanical energy,
##E=(1/2mv_f^2-1/2mv^2_i)+(0-mgh)##
##v=\sqrt{v^2_i+2mgh} \implies v=\sqrt{14^2+2((9.8)(12.5)}=21m/s##

Using kinematics to verify,
##0=v_i\sin \theta -gt##
##t=\frac{v_i\sin \theta}{g}=\frac{14\sin 41}{9.8}=0.937 s##
##y_f=14\sin 41 (.937)-.5(9.8)(.937)^2=4.3m## which gives the height traveled above the horizontal
Calculate speed ##v=\sqrt{2(9.8)(12.5+4.3)}=18.14m/s##

Which is wrong they both look correct.
 
Physics news on Phys.org
lion_ said:

Homework Statement


A ##1.50## kg snowball is fired from a cliff ##12.5##m high with an initial velocity of ##14.0## m/s, directed ##41^{\circ}## above the horizontal. How fast does the ball travel when it hits the ground.

Homework Equations


##E=K+U##
##V^2_f=v^2_i+2a(y_f-y_i)##
##y_f=v_i \sin \theta-gt^2##

The Attempt at a Solution


First using conservation of mechanical energy,
##E=(1/2mv_f^2-1/2mv^2_i)+(0-mgh)##
##v=\sqrt{v^2_i+2mgh} \implies v=\sqrt{14^2+2((9.8)(12.5)}=21m/s##

Using kinematics to verify,
##0=v_i\sin \theta -gt##
##t=\frac{v_i\sin \theta}{g}=\frac{14\sin 41}{9.8}=0.937 s##
##y_f=14\sin 41 (.937)-.5(9.8)(.937)^2=4.3m## which gives the height traveled above the horizontal
Calculate speed ##v=\sqrt{2(9.8)(12.5+4.3)}=18.14m/s##

Which is wrong they both look correct.
The first method looks correct.

In the second method, you completely ignored the horizontal component of the velocity.
 
How is the horizontal component needed? The only thing we are concerned with is the height, thus once the snowball reaches maximum height, it becomes a one dimensional problem regardless of how fast the horizontal component is traveling. It is independent of gravity.
 
lion_ said:
How is the horizontal component needed? The only thing we are concerned with is the height, thus once the snowball reaches maximum height, it becomes a one dimensional problem regardless of how fast the horizontal component is traveling. It is independent of gravity.
How is it not needed?

Aren't you asked:
lion_ said:
How fast does the ball travel when it hits the ground.

How is speed related to velocity?
 
So you need to calculate ##v_f=\sqrt{v_x^2+v_y^2}=\sqrt{14^2\cos^2 41^{\circ}+(18.14)^2}=20.99## I guess that what was missing thanks.
 
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
Back
Top