Solving a Simple Height Problem for a Home Run in Baseball | 120m Distance

  • Thread starter Thread starter mohabitar
  • Start date Start date
  • Tags Tags
    Height
AI Thread Summary
To determine the maximum height a baseball can clear when hit at a speed of 38.2 m/s and an angle of 30 degrees, the player must calculate the vertical and horizontal components of the velocity, yielding 33.08 m/s and 19.1 m/s, respectively. The key is to find the time it takes for the ball to travel 120 meters horizontally, which is crucial for calculating its vertical height at that distance. The initial height of the ball is 1 meter, and the equations for vertical height and horizontal distance must be set up correctly to find the maximum height. It's important to note that the final velocity in the x-direction is not zero at the maximum height, and there is no acceleration in that direction. Correctly applying these principles will yield the tallest wall the ball can clear.
mohabitar
Messages
140
Reaction score
0
A baseball player wants to hit a home run over the far wall of a stadium. He hits the ball 1 meter above the ground so that its speed is 38.2 m/s and such that it makes an angle of 30 degrees with respect to the horizontal. What is the tallest wall the players ball can clear 120m away?

____________

So I tried breaking down the velocity into its vertical and horizontal components, to get V[x]=33.08 and V[y]=19.1 m/s.

Then I used basic equations to find whatever values I could find, without any particular goal. So if d[x]=120 and V[x] 33.08, and final velocity is 0, then I can use v^2=u^2+2as, to get an acceleration of 4.55 m/s.

But really after this I had no idea where to head. Am I on the right path?
 
Physics news on Phys.org
The goal here is to compute the vertical height of the ball when it is a horizontal distance of 120 m away from the launch point. This vertical height tells you the tallest wall that can be cleared. Does that make sense?
 
Well you I knew that part I just meant I was solving equations with no particular reason. How should I set this up?
 
You know equations for the height y vs time and the horizontal distance x vs time (in terms of the given parameters including launch speed, launch angle, and initial height).

If you can figure out the time at which x = 120 m, it stands to reason that you can then figure out the vertical height at that time.

Edit: the method you tried is incorrect since the final velocity (at max height) is not zero in the x-direction, so you have misapplied the formula you used. Furthermore, there is no acceleration in the x-direction, which means the formula you used does not apply at all.
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'Minimum mass of a block'
Here we know that if block B is going to move up or just be at the verge of moving up ##Mg \sin \theta ## will act downwards and maximum static friction will act downwards ## \mu Mg \cos \theta ## Now what im confused by is how will we know " how quickly" block B reaches its maximum static friction value without any numbers, the suggested solution says that when block A is at its maximum extension, then block B will start to move up but with a certain set of values couldn't block A reach...
Thread 'Calculation of Tensile Forces in Piston-Type Water-Lifting Devices at Elevated Locations'
Figure 1 Overall Structure Diagram Figure 2: Top view of the piston when it is cylindrical A circular opening is created at a height of 5 meters above the water surface. Inside this opening is a sleeve-type piston with a cross-sectional area of 1 square meter. The piston is pulled to the right at a constant speed. The pulling force is(Figure 2): F = ρshg = 1000 × 1 × 5 × 10 = 50,000 N. Figure 3: Modifying the structure to incorporate a fixed internal piston When I modify the piston...
Back
Top