Solving a system of 3 nonlinear equations

  • Thread starter Thread starter EM_Guy
  • Start date Start date
  • Tags Tags
    Nonlinear System
EM_Guy
Messages
217
Reaction score
49
a = xyz
b = xy+xz+yz
c = x + y + z

How do you solve x, y, and z?
 
Physics news on Phys.org
x=c-y-z
b=(c-y-z)y + (c-y-z)z + yz = c(y+z)-y^2-zy-z^2
Solve this quadratic equation for y (or z), use both in a=xyz and hope that it has a nice solution?
 
It is not a quadratic equation. And it is not a "nice" solution.

I have determined that z^3-cz^2+bz-a = 0. So, if we can find the roots of the cubic function, then we have z as a function of a, b, and c. Then, it should be straightforward to find x and y in terms of a, b, and c.

But I forget how to find the roots of a cubic function.
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
Back
Top