Your equation should be:
<br />
m \, \dot{v} = m \, g - k \, v^3<br />
It is a 1st order ODE in velocity! The one you have is 2nd order. If you introduce dimensionless variables for time and velocity:
<br />
t = a \, x, v = b \, y, \ y = y(x)<br />
then, the equation reduces to:
<br />
m \, \frac{b}{a} \, y'(x) = m \, g - k \, b^3 \, y^3<br />
Let us choose a, and b so that:
<br />
m \, \frac{b}{a} = m \, g = k \, b^3<br />
<br />
a = \left( \frac{m}{k \, g^2} \right)^{\frac{1}{3}}, \ b = \left( \frac{m \, g}{k} \right)^{\frac{1}{3}}<br />
then the ODE simplifies in form:
<br />
y' = 1 - y^3<br />
This equation is with separable variables:
<br />
\frac{dy}{1 - y^3} = dx<br />
Integrating:
<br />
\int_{y_0}^{y}{\frac{dy'}{1 - (y')^3}} = x, \ y(x = 0) = y_0<br />
Do the partial fraction decomposition:
<br />
\frac{1}{1 - (y')^3} = \frac{1}{(1 - y') (1 + y' + (y')^2)} = \frac{A}{1 - y'} + \frac{B \, y' + C}{1 + y' + (y')^2}<br />
<br />
1 = A (1 + y' + (y')^2) + (B \, y' + C)(1 - y')<br />
<br />
1 = (A + C) + (A + B - C) \, y' + (A - B) \, (y')^2<br />
<br />
\left\lbrace\begin{array}{lcl}<br />
A + C & = & 1 \\<br />
A + B - C & = & 0 \\<br />
A - B & = & 0<br />
\end{array} \right. \Leftrightarrow A = \frac{1}{3} \, B = \frac{1}{3} \, C = \frac{2}{3}<br />
Thus, you have the integrals:
<br />
\frac{1}{3} \, \int_{y_0}^{y}{\frac{dy'}{1 - y'}} + \frac{1}{3} \, \int_{y_0}^{y}{dy' \, \frac{y' + 2}{1 + y' + (y')^2}} = x<br />
Do the integrals (assuming 0 \le y, \ y_0 < 1