mooshasta
- 28
- 0
I came across the following problem recently:
http://www.tubaroo.com/stuff/circuit.gif
R_1 = R_2 = 4700 \Omega
C = 0.060 F
V = 12 VS1 has been closed for a long time. At t = 0, S2 is closed. Sketch a graph of the currents I_1 through R_1 and I_2 through R_2.
I wasn't really sure where to begin with this. I ended up with the following graph:
http://www.tubaroo.com/stuff/igraph.gif
I reasoned that at t=0, the entire voltage (12 V) appears across the capacitor (since S1 had been closed for a long time), so when R_2 is placed in parallel with it, there must be a 12 V potential difference across it, too. The current I_2 must be \frac{12}{4700} then. The current through R_1 is 0 at t = 0 because S1 had been closed for a long time. At a long time after S2 is closed, however, the resistors are effectively in series with one another. Therefore the currents through each must be the same, and equal to the voltage of the battery over the sum of the resistances, or \frac{12}{9400}.
I can't figure how exactly the graphs would look between the two points, but this is my best guess.Can anyone help explain to me exactly what happens in between? Much appriciated.
http://www.tubaroo.com/stuff/circuit.gif
R_1 = R_2 = 4700 \Omega
C = 0.060 F
V = 12 VS1 has been closed for a long time. At t = 0, S2 is closed. Sketch a graph of the currents I_1 through R_1 and I_2 through R_2.
I wasn't really sure where to begin with this. I ended up with the following graph:
http://www.tubaroo.com/stuff/igraph.gif
I reasoned that at t=0, the entire voltage (12 V) appears across the capacitor (since S1 had been closed for a long time), so when R_2 is placed in parallel with it, there must be a 12 V potential difference across it, too. The current I_2 must be \frac{12}{4700} then. The current through R_1 is 0 at t = 0 because S1 had been closed for a long time. At a long time after S2 is closed, however, the resistors are effectively in series with one another. Therefore the currents through each must be the same, and equal to the voltage of the battery over the sum of the resistances, or \frac{12}{9400}.
I can't figure how exactly the graphs would look between the two points, but this is my best guess.Can anyone help explain to me exactly what happens in between? Much appriciated.
Last edited by a moderator: