Solving complex exponential polynomials

beechner224
Messages
1
Reaction score
0
Are there any general methods to solve the following complex exponential polynomial without relying on numerical methods? I want to find all possible solutions, not just a single solution.

e^(j*m*\theta1) + e^(j*m*\theta2)+e^(j*m*\theta3) + e^(j*m*\theta4) + e^(j*m*\theta5) = 0

where

\theta1<\theta2<\theta3<\theta4<\theta5

and

m is a integer
 
Mathematics news on Phys.org
At first a question:
Why do you include m? You could absorb it into the thetas?
The ordering of the thetas probably doesn't play a role either.

With that in mind you could probably solve these equations this way:
The sum of three terms should be smaller than 2 in magnitude. Then it is always possible to find the final two exponentials.
 
Last edited:
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top