an extract from a famous work of algebra:
i got bored with fixing all the superscripts that reproduced badly after a while:
For the solutions x1, x2 of the quadratic equation x^2+px+q = 0, we have (since at least 825 AD) the formula x = (1/2){-p + D^(1/2)}, in terms of the coefficients p, q, where D = (x1-x2)^2 = p^2-4q. The two solutions are obtained by taking the two square roots of D. For the cubic equation x^3+px+q = 0, years of toil and some intrigue led to the publication, by Cardano in 1545, of the following formula. x =
(1/3)[{(-27q/2)+(3/2)(-3D)^(1/2)}^(1/3) - 3p/{(-27q/2) + (3/2)(-3D)^(1/2)}^(1/3)].
Fixing a value of (-3D)^(1/2), where
D = (x1- x2)^2(x1-x3)^2(x2-x3)^2 = -4p^3-27q^2, and varying the cube root gives all three solutions. Eg., in the equation x^3-1 = 0, p = 0, q = -1, D = -27, so we get x = (1/3){27/2 + 27/2}^(1/3) =
{1/2 + 1/2}^(1/3) = 11/3, as hoped.
Similarly, for x^3-a = 0, we have p = 0, q = -a, D = -27a^2, hence
x = (1/3){27a/2 + (3/2)(81a^2)^(1/2)}^(1/3) = (1/3){27a}^(1/3) = a^(1/3).
For x^3 - 4x = 0, we get p = -4, q = 0, D = 256, and so
x = (1/3) [{(3/2)(-768)^(1/2)}^(1/3) + 12/{(3/2)(-768)^(1/2)}^(1/3)]
= (1/3) [ {(-27)(64)}^(1/6) + 12/{(-27)(64)}^(1/6) ]
= (1/3) [ 2¯3 i1/3 + 12/{2¯3 i1/3} ] = (2/¯3 )( i1/3 + i-1/3)
= (4/¯3 )Re(i1/3).
Varying the cube roots of i in this formula gives
(4/¯3 )(cos(