tylersmith7690
- 21
- 0
Homework Statement
For the following differential equation:
dy/dx = \frac{2cos^2x-sin^2x+y^2}{2 cosx} , -pi/2 < x < pi/2
show that the substitution y(x)=sin x + 1/u(x) yeilds the differential equation for u(x),
du/dx = -u tan x - \frac{1}{2}sec x
Hence find the solution y(x) to the original differential equation that satisfies the condition y(0)=2
Find the interval on which the solution to the initial value problem is defined.
Homework Equations
I have no idea where to go next to get y(x).
The Attempt at a Solution
using y= sinx + 1/u
dy/dx = cos x - 1/u^2 du/dx
then let this dy/dx = dy/dx in the original equation and solve for du.
cos x \frac{-1}{u^2}du/dx = \frac{2cos^2x-sin^2x+y^2}{2cosx}
cos x\frac{-1}{u^2}du/dx= \frac{2 cos^2x+ (2/u) sinx + 1/u^2}{2cosx}
\frac{-1}{u^2}du/dx = \frac{1}{u}\frac{sinx}{cosx}+\frac{1}{u^2}\frac{1}{2cosx}
times through by -1/u^2
du/dx= -u tan x -1/2 sec x
Now du/dx + u tanx = -1/2 sec x, which is a first order linear equation
so integrating factor is I= sec x
so , sec x dx/du + u tanx sec x = -1/2 sec^2 x
so sec x u= \int -(1/2). sec^2 x
= - 1/2 tan x +C
divide through by sec x
u= -1/2 sin x + C(cos x) [general solution]
now if i sub in u= 1/(y-sin x)
i can't rearrange it to get y by itself. This is where I am stuck.
Sorry for the poor latex use. I have little knowledge of it atm.