Solving Differential Equations to Finding Solutions

Logarythmic
Messages
277
Reaction score
0
Can anyone help me solve

\dot{x} = Hx_0 \left( \sqrt{B} \frac{x_0}{x} + \sqrt{1-A-B} \right)
 
Physics news on Phys.org
Logarythmic said:
Can anyone help me solve

\dot{x} = Hx_0 \left( \sqrt{B} \frac{x_0}{x} + \sqrt{1-A-B} \right)

what is what? in any case, try integrating factor method
 
It's equivalent to solving

y \frac{dy}{dx} + ay + b = 0
 
We need more information. Are you saying that A, B, H, and x0 are constants? Is so, simplify by letting
U= \frac{H\sqrt{B}x_0^2}{x}
and
V= Hx_0\sqrt{1- A- B}[/itex]<br /> <br /> So your equation becomes <br /> \frac{dx}{dt}= \frac{U}{x}+ V= \frac{U+ Vx}{x}<br /> \frac{xdx}{U+ Vx}= dt[/itex]&lt;br /&gt; &lt;br /&gt; That&amp;#039;s easy to integrate.
 
Last edited by a moderator:
Then I get

t= \frac{x}{V} -\frac{U}{V^2}ln(Vx+U)

and trying to solve this for x is rather difficult?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top