sara_87
- 748
- 0
Homework Statement
I want to evaluate the integral:
\int \frac{\sqrt{a^2-x^2}(x-b)}{x^2-c^2}dx
Homework Equations
the integration limits are d (lower limit) and a (upper limit)
The Attempt at a Solution
First, I split the integral into 2 parts:
\int \frac{\sqrt{a^2-x^2}(x)}{x^2-c^2}dx- \int \frac{\sqrt{a^2-x^2}(b)}{x^2-c^2}dx<br />
Then, i decided to deal with each part separately.
For the first part, i tried to use a substitution: let u=x^2, this gives:
\int \frac{\sqrt{a^2-u}}{2(u-c^2)}du
But, i thave no idea how to continue from there. the second part i also find difficult.
Does anyone have any ideas on the substitution i should consider?
Thank you very much in advance.