Solving e^{iz}-e^{-iz}=4i: Why Is 2nd Way Better?

  • Thread starter Thread starter fargoth
  • Start date Start date
fargoth
Messages
318
Reaction score
6
sin(z)=2
e^{iz}-e^{-iz} = 4i
e^{2iz}-4ie^{iz} = 1
iz \ln (e^{iz}-4i) = 0
z=0

when solving it by
w = e^{iz}
w^2-4wi-1 = 0
i get one more solution, why is the first way not as good as the second way?
 
Physics news on Phys.org
ln(ab)= ln(a)+ ln(b), not ln(a)*ln(b).

If e^{2iz}-4ie^{iz} = 1
then e^{iz}(e^{iz}- 4i)= 1
so iz+ ln(e^{iz}- 4i)= 0
NOT iz \ln (e^{iz}-4i) = 0
 
hehe, right, that was a dumb mistake :biggrin:
thank you for pointing it out.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top