jdstokes
- 520
- 1
Samples of A (2.5 mol) and B (1.0 mol) are placed in a 5.0 L contained and the following reaction takes place
\rm 2A(g) \rightleftharpoons B(g) + C(g)
At equilibrium, the concentration of A is 0.20 M. What is the vlaue of K_\mathrm{c}?
n_0(\mathrm{A}) = 2.5\thinspace\mathrm{mol}
n_0(\mathrm{B}) = 1.0\thinspace\mathrm{mol}
n_\mathrm{eq}(\mathrm{A}) = 1.0\thinspace\mathrm{mol}
\Delta n(\mathrm{A}) = -1.5\thinspace\mathrm{mol}
\Delta n(\mathrm{B}) = -0.75\thinspace\mathrm{mol} = \Delta n(\mathrm{C})
Now,
K_\mathrm{c} = \frac{c(\mathrm{B})c(\mathrm{C})}{c(\mathrm{A})^2}
Putting
c(\mathrm{A}) = 0.2\thinspace\mathrm{mol}
c(\mathrm{B}) = \frac{1.0-0.75}{5.0}\thinspace\mathrm{mol} = 0.050\thinspace\mathrm{mol}
c(\mathrm{C}) = \frac{0.75}{5.0}\thinspace\mathrm{mol} = 0.15\thinspace\mathrm{mol}
I compute
K_\mathrm{c} = 0.1875\thinspace\mathrm{mol}.
But the correct answer is 1.3 mol.
\rm 2A(g) \rightleftharpoons B(g) + C(g)
At equilibrium, the concentration of A is 0.20 M. What is the vlaue of K_\mathrm{c}?
n_0(\mathrm{A}) = 2.5\thinspace\mathrm{mol}
n_0(\mathrm{B}) = 1.0\thinspace\mathrm{mol}
n_\mathrm{eq}(\mathrm{A}) = 1.0\thinspace\mathrm{mol}
\Delta n(\mathrm{A}) = -1.5\thinspace\mathrm{mol}
\Delta n(\mathrm{B}) = -0.75\thinspace\mathrm{mol} = \Delta n(\mathrm{C})
Now,
K_\mathrm{c} = \frac{c(\mathrm{B})c(\mathrm{C})}{c(\mathrm{A})^2}
Putting
c(\mathrm{A}) = 0.2\thinspace\mathrm{mol}
c(\mathrm{B}) = \frac{1.0-0.75}{5.0}\thinspace\mathrm{mol} = 0.050\thinspace\mathrm{mol}
c(\mathrm{C}) = \frac{0.75}{5.0}\thinspace\mathrm{mol} = 0.15\thinspace\mathrm{mol}
I compute
K_\mathrm{c} = 0.1875\thinspace\mathrm{mol}.
But the correct answer is 1.3 mol.