MHB Solving Evaluate 3 * sqr(2): Understanding the Method

  • Thread starter Thread starter Ziggletooth
  • Start date Start date
AI Thread Summary
The discussion focuses on evaluating expressions involving square roots, specifically 3 * sqrt(2) and 2 * sqrt(16). The confusion arises from incorrectly applying the method of squaring both factors, leading to incorrect conclusions about equality. It is clarified that while one can manipulate the expressions, the square root must be properly addressed to avoid errors. The key takeaway is that simplifying square roots involves understanding the context and correctly applying mathematical operations, rather than merely squaring factors. This highlights the importance of careful evaluation in mathematical expressions.
Ziggletooth
Messages
5
Reaction score
0
I'm having trouble understanding how this method works and why it appears not to work on similar questions.

For the question evaluate 3 * sqr(2)

I understand I can square both factors to eliminate the square root.

(3 * 3) * 2 = 18

However this does not appear to work with 2 * sqr(16)

(2 * 2 ) * 16 = 64

But the answer is 2 * 4 = 8. I can see why that is, because 4 is the sqr(16), but I don't understand why the previous method failed on what appears to me to be essentially the same question.

Any help would be appreciated, thank you.
 
Mathematics news on Phys.org
You correctly stated that $$2 \sqrt{16} \neq 64$$.

Why would you believe that $$3 \sqrt{2}=18$$? These two are not equal in the same way that the first two are not equal.
 
Ziggletooth said:
I'm having trouble understanding how this method works and why it appears not to work on similar questions.

For the question evaluate 3 * sqr(2)

I understand I can square both factors to eliminate the square root.

(3 * 3) * 2 = 18
Yes, you can but how does that help you evaluate [math]3\sqrt{2}[/math]?

I suspect that you are thinking, instead, of "taking the '3' inside the square root":
[math]3\sqrt{2}= \sqrt{9(2)}= \sqrt{18}[/math].

However this does not appear to work with 2 * sqr(16)

(2 * 2 ) * 16 = 64
But it does work: [math]2\sqrt{16}= \sqrt{4(16)}=\sqrt{64}[/math]

But the answer is 2 * 4 = 8. I can see why that is, because 4 is the sqr(16), but I don't understand why the previous method failed on what appears to me to be essentially the same question.

Any help would be appreciated, thank you.
You can't just "throw away" the square root. If the problem is to find a\sqrt{b} then you can "take the a inside the square root" to get [math]\sqrt{a^2b}[/math] but you still have to take the square root!

Actually most people would consider "simplifying" a square root to be going the other way: to simplify [math]\sqrt{18}[/math] write it as [math]\sqrt{9(2)}= 3\sqrt{2}[/math].
 
I'm sorry it appears the source of my confusion was very much that I assumed I was evaluating something when in fact I was originally doing these operations to make it easier to compare which of two expressions were greater. That wasn't clear to me at the time so I was confused why it wasn't working is some cases but it depended on the context of the numbers I was comparing.

Thanks
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Back
Top