Solving for Constants and Graphing Wave Function: Modern Physics Exam Guide

AI Thread Summary
The discussion focuses on solving for constants in a wave function for an electron, specifically addressing boundary conditions and continuity. Participants emphasize the importance of matching boundary conditions at specified points, leading to equations that relate constants a, b, c, and d. The calculations suggest that b equals zero, a is negative two times c, and d is negative three times L. Additionally, it's noted that the derivative of the wave function does not need to be continuous if the potential is discontinuous. The final goal is to determine the shape of the wave function while ensuring normalization.
OhNoYaDidn't
Messages
25
Reaction score
0
This was in my Introduction to modern physics exam, but i don't quite know what i should do here... My teacher said there was an easy trick. Can you guys help me?

An electron is described by the following wave function
ψ(x)=(ax+b for 0<x<L,
cx+d for L<x<3L,
0 for x<0 V x>3L)

a) Determine the constants a, b and c, and sketch the graph of Ψ.

The Attempt at a Solution


I tried using the boundary conditions, but everything turns out being zero. Guys, please help me, I'm lost here.
 
Physics news on Phys.org
The gist of the problem as you pointed out, is to match the boundary conditions between the different regions. However, I don't see why this should turn out to be zero everywhere. Could you show your work that led you to this conclusion?
 
Ok, so applying the boundary conditions of the wave functions.
ψ(0-)= ψ(0+)
ψ(L-)= ψ(L+)
ψ(3L-)= ψ(3L+)
i get
b=0
a=-2c
d=-3L
---
Then i use the continuity of the derivative:

and i get
a = 0 = c = b, only d=-3L.

Is this right? I hope I'm not doing any ridiculous mistake.
 
OhNoYaDidn't said:
Ok, so applying the boundary conditions of the wave functions.
ψ(0-)= ψ(0+)
ψ(L-)= ψ(L+)
ψ(3L-)= ψ(3L+)
i get
b=0
a=-2c
d=-3L
d = -3Lc. I presume that is a typo since u managed to arrive at a = -2c.

From this you should be able to figure out the shape of the wavefunction. The values of a, c and d (which are related to each other), can be determined through imposing normalisation.

It is okay for the derivative not to be continuous. This can happen when the potential function itself is discontinuous to begin with. In this case since the potential is not given, we assume that the wavefunction given is not the trivial (zero) solution.
 
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top