Solving for Φ(k) in Quantum Fourier Transform with ψ(x,0)=e^(-λ*absvalue(x))

  • Thread starter Thread starter chris2020
  • Start date Start date
  • Tags Tags
    Fourier Quantum
AI Thread Summary
The discussion revolves around finding Φ(k) for the given wave function ψ(x,0)=e^(-λ*absvalue(x)). The integral for Φ(k) is set up using the Fourier transform, with a focus on handling the absolute value in the exponent. Participants suggest simplifying the integral by considering the properties of even and odd functions, which can streamline the calculations. There is a mention of a potential typo in the mathematical expressions that could affect the solution. Overall, the conversation emphasizes the importance of correctly setting up the integral and exploring alternative approaches for solving the problem.
chris2020
Messages
8
Reaction score
0

Homework Statement


Assume ψ(x,0)=e^(-λ*absvalue(x)) for x ± infinity, find Φ(k)

Homework Equations


Φ(k)=1/√(2π)* ∫e(-λ*absvalue(x))e(-i*k*x)dx,-inf, inf[/B]

The Attempt at a Solution

, my thought was Convert the absolute value to ± x depending on what of the number line was being integrated.[/B]

U=i*k*x
du/(i*k)=dx

1/√(2π)*∫e-λ*√(u2/(i*k)2)*e(-u)du,-inf,inf

Now fixing abs value

1/((2π)*(i*k))*∫eλ/(i*k)*ue(-u),du,-inf,o

the integrand for one half of the number line looks like:

E(u*(λ/(ik)-1)

For which i get: after limits are taken for that half of the integral

(1/((λ/ik)-1))

Then similar integral for other half

Is this the right track or am i totally off?

 
Physics news on Phys.org
Hello and welcome to PF!

Your work looks OK. I don't think you need to make the substitution u = ikx. Looks like a typo in one place where you left out the square root for the ##2 \pi## factor.

If you feel more comfortable with working with real functions, write ##e^{-ikx} = \cos (kx) - i \sin (kx)##. You can then check to see if the resulting integrands are even or odd functions over the interval ##-\infty < x < \infty##.
 
yea i was thinking that route also but i forgot about about the even or odd shortcut

Thanks!
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top