Solving for v(t), tmax, and Max Height of a Thrown Ball

AI Thread Summary
The discussion revolves around solving the motion of a ball thrown vertically upwards with drag proportional to v². Part A successfully derives the acceleration equation, a = -g(1+v²/vt²), while part B presents challenges in finding v(t), tmax, and the maximum height. Participants note that at maximum height, the velocity v must equal zero, leading to the equation 0 = -vt tanh(t/T). There is confusion regarding the use of hyperbolic functions, with some suggesting that the integral should involve arctan instead of tanh due to the upward motion. The conversation highlights the importance of correctly applying calculus and understanding the behavior of the functions involved.
zeromaxxx
Messages
14
Reaction score
0

Homework Statement


A ball is thrown vertically upwards at speed v0. Assume drag force is proportional to v2.

a) Show that, while moving upwards, Newton's Second Law gives a = -g(1+v2/vt2) where vt is the terminal speed.

b) Take v0 = 3vt and solve for v(t), the time tmax at which it reaches max height and the maximum height it reaches. Express your results in terms of g and vt

Homework Equations


a = -g(1+v2/vt2)

v = -vt tanh (t/T), where T = vt/g

y = -vt2/g * ln [cosh (gt/vt)]


The Attempt at a Solution



I got part A of the question simple enough, I'm having trouble with part B. I got the expression for v(t) which was the integral of the first equation. I'm having trouble looking for tmax and the max height. It sounds simple enough but I can't grasp around the idea on how to do it.
 
Physics news on Phys.org
Hint: what is v at the max height? Think calculus.
 
Last edited:
hotvette said:
What is v at the max height? Think calculus.

v at max height should be 0 right?

so then 0 = -vt tanh (t/T)

It's how to deal with the equation that comes after.

tanh x = (ex - e-x)/(ex + e-x)

tanh (t/T) = (et/T - e-t/T)/(et/T + e-t/T)

0 = -vt[ (et/T - e-t/T)/(et/T + e-t/T)]

so if v = 0, then the the exponential functions on the numerator should equal 1 since -vt(1-1/1+1) = 0. This would be the case if the term (t/T) = 0 cause e0 = 1.

That's the farthest I got since I can't think of anything that can make the term equal zero unless ' t ' itself is zero. I think I'm missing something here.
 
I believe your expression for v(t) is incorrect, since v(0) should be v0.
 
Last edited:
I have the same question on my assignment. I don't get any hyperbolic functions because the object is moving upwards. It would become hyperbolic if it was moving downwards. The integral of 1/(1+x^2) is arctan. So instead of having tanh it would be changed to arctan.
 
Thread 'Help with Time-Independent Perturbation Theory "Good" States Proof'
(Disclaimer: this is not a HW question. I am self-studying, and this felt like the type of question I've seen in this forum. If there is somewhere better for me to share this doubt, please let me know and I'll transfer it right away.) I am currently reviewing Chapter 7 of Introduction to QM by Griffiths. I have been stuck for an hour or so trying to understand the last paragraph of this proof (pls check the attached file). It claims that we can express Ψ_{γ}(0) as a linear combination of...
Back
Top