BraedenP
- 94
- 0
Homework Statement
Given partitioned matrices:
A=\begin{bmatrix}<br /> I & 0 & 0\\ <br /> C & 0 & 0\\ <br /> A & B & I<br /> \end{bmatrix}<br /> ,A^{-1}=\begin{bmatrix}<br /> I & 0 & 0\\<br /> Z & I & 0\\<br /> X & Y & I<br /> \end{bmatrix}
Solve for matrices Z, X, and Y
Homework Equations
N/A
The Attempt at a Solution
I started by equating the product of those partitioned matrices to a partitioned identity matrix:
\begin{bmatrix}<br /> I & 0 & 0\\ <br /> C & 0 & 0\\ <br /> A & B & I<br /> \end{bmatrix}<br /> \begin{bmatrix}<br /> I & 0 & 0\\<br /> Z & I & 0\\<br /> X & Y & I<br /> \end{bmatrix}<br /> = \begin{bmatrix}<br /> I & 0 & 0\\<br /> 0 & I & 0\\<br /> 0 & 0 & I\end{bmatrix}
Then My multiplying out the entries and comparing them to the expected corresponding entries in the identity matrix, I generated some equations:
C+Z=0 \to Z=-C
A+BZ+X=0 \to X=-B(-C)-A \to X=BC-A
B+Y=0 \to B=-Y
Therefore:
Z=-C, X=BC-A, B=-Y
Am I right in my method, or am I out to lunch? Hopefully I broke no rules in my multiplication of the sub-matrices..
Any advice would be appreciated.