Solving Inequality Problem: Find a for 3 on 0-2 Interval

  • Thread starter Thread starter Saitama
  • Start date Start date
  • Tags Tags
    Inequality
AI Thread Summary
The discussion focuses on finding values of 'a' for which the minimum of the quadratic trinomial 4x² - 4ax + a² - 2a + 2 equals 3 within the interval [0, 2]. Participants clarify that the problem is about determining the minimum, not the roots, and explore various cases based on the position of the minimum. They derive two potential solutions for 'a': 1 - √2 and 5 + √10, while noting that the second value must satisfy the condition a > 4. The conversation emphasizes the importance of checking the minimum's location and ensuring it meets the inequality constraints. Understanding different approaches, including calculus and case analysis, is highlighted as beneficial for solving the problem effectively.
Saitama
Messages
4,244
Reaction score
93

Homework Statement


Find all numbers ##a## for each of which the least value of the quadratic trinomial ##4x^2-4ax+a^2-2a+2## on the interval ##0\leq x \leq 2## is equal to 3.

Homework Equations


The Attempt at a Solution


I don't really know what should be the best way to start with this type of question. I started with finding out the roots of the given equation. The roots come out to be
x_1=\frac{a+\sqrt{2(a-1)}}{2}, x_2=\frac{a-\sqrt{2(a-1)}}{2}
The roots exist when ##a>1## and it is easy to see that ##x_1>x_2## for ##a>1##. I don't know how to proceed ahead. 0 and 2 should not lie between the roots as we need the minimum value to be 3. Also, ##x_1## is always greater than zero for ##a>1## so 0 and 2 should lie before ##x_1## and ##x_2## on a number line. Hence, the least value will be at ##x=2## and this should be equal to 3.
4(2)^2-4a(2)+a^2-2a+2=3
Solving this, I get ##a=5+\sqrt{10}, 5-\sqrt{10}##. Both the values are greater than hence both are admissible but the answer key does not show up the second value i.e ##5-\sqrt{10}##. :confused:

Any help is appreciated. Thanks!
 
Last edited:
Physics news on Phys.org
Hi Pranav-Arora! :smile:

You seem to be misinterpreting the question.

The question isn't about the roots, it's about the minimum. :confused:
 
tiny-tim said:
Hi Pranav-Arora! :smile:

You seem to be misinterpreting the question.

The question isn't about the roots, it's about the minimum. :confused:

I understand that the question asks me about the minimum. :smile:

0 and 2 should not lie between the roots. The given minimum is 3 which is a positive value, and between the roots, the value of quadratic is negative.

But I am still not sure about how should I begin? What I posted were my thoughts about approaching the problem but I feel that is incorrect. Can I have a few hints? :)
 
i'd start by rewriting the original equation in the form (x - b)2 - c2 ≥ 0 :wink:
 
tiny-tim said:
i'd start by rewriting the original equation in the form (x - b)2 - c2 ≥ 0 :wink:

Sorry tiny-tim, there was a typo in the first post, I have corrected it. The correct quadratic is ##4x^2-4ax+a^2-2a+2##, I accidentally wrote -2x instead of -2a. Should I still follow your hint? Sorry for the trouble. :redface:
 
yes :smile:
 
tiny-tim said:
yes :smile:

I came up with this: ##(2x-a)^2-2(a-1)## but this doesn't match up with what you asked me. And how did you get that greater than or equal to symbol? :confused:
 
Pranav-Arora said:
I came up with this: ##(2x-a)^2-2(a-1)##

and the minimum of that (for 0 ≤ x ≤ 2) is … ? :smile:
And how did you get that greater than or equal to symbol? :confused:

well, we want a minimum, and the question is posed as an inequality problem …

so i thought it was time to throw in an inequality! :biggrin:
 
tiny-tim said:
and the minimum of that (for 0 ≤ x ≤ 2) is … ? :smile:
##a^2-2(a-1)##

well, we want a minimum, and the question is posed as an inequality problem …

so i thought it was time to throw in an inequality! :biggrin:

:confused:
Why greater than or equal to zero? Why not greater than or equal to 3? I guess I am missing something really basic. :rolleyes:
 
  • #10
Pranav-Arora said:
Why not greater than or equal to 3?

i preferred to get everything over onto the LHS (and only 0 on the RHS) :smile:
 
  • #11
At some stage I think you're going to have to break it into cases. You're looking for the minimum only within the range [0, 2]. In the OP you considered the possibility that the minimum occurs at x=2. You found two values for a that give f(2)=3 , but you did not check whether either of these give f(x)>=3 for all x in [0, 2].
You also seem to have ruled out other locations for the minimum erroneously. There are two cases to consider for alternative locations of the minimum.
 
  • #12
tiny-tim, I still do not understand your inequality method but meanwhile, I tried something else and reached the answer but not sure if my approach is correct.

I had ##(2x-a)^2-2(a-1)##. The squared term is zero when x=a/2.

Case I:
##0 \leq a/2 \leq 2 \Rightarrow 0 \leq a \leq 4##
For this case, the minimum value is at a/2 i.e ##-2(a-1)##. This is equal to 3 when a=-1/2 but this is not possible as a ranges between 0 and 4.

Case II:
When ##a/2 > 2 \Rightarrow a > 4##, the minimum value is at 2.
Solving the quadratic, I get ##a=5+\sqrt{10}, 5-\sqrt{10}##. Second value is not possible as a is greater than 4.

Case III:
When ##a/2 < 0 \Rightarrow a<0##, the minimum value is at 0. From this I get two values ##a=1-\sqrt{2}, 1+\sqrt{2}##. Only the first value is possible.

Hence, ##a=1-\sqrt{2}, 5+\sqrt{10}##. This is the correct answer however I am unsure about my approach.

I am still interested in understanding tiny-tim's method.
 
  • #13
Pranav-Arora said:
tiny-tim, I still do not understand your inequality method but meanwhile, I tried something else and reached the answer but not sure if my approach is correct.

I had ##(2x-a)^2-2(a-1)##. The squared term is zero when x=a/2.

Case I:
##0 \leq a/2 \leq 2 \Rightarrow 0 \leq a \leq 4##
For this case, the minimum value is at a/2 i.e ##-2(a-1)##. This is equal to 3 when a=-1/2 but this is not possible as a ranges between 0 and 4.

Case II:
When ##a/2 > 2 \Rightarrow a > 4##, the minimum value is at 2.
Solving the quadratic, I get ##a=5+\sqrt{10}, 5-\sqrt{10}##. Second value is not possible as a is greater than 4.

Case III:
When ##a/2 < 0 \Rightarrow a<0##, the minimum value is at 0. From this I get two values ##a=1-\sqrt{2}, 1+\sqrt{2}##. Only the first value is possible.

Hence, ##a=1-\sqrt{2}, 5+\sqrt{10}##. This is the correct answer however I am unsure about my approach.

I am still interested in understanding tiny-tim's method.
That looks good. I broke it into cases according to whether the min was at 0, 2, or in-between, but the two methods are pretty much equivalent. I doubt tiny-tim's method was much different either, but it would be interesting to see.
 
  • #14
Bump...
 
  • #15
I believe Tiny-tim was using calculus to get the answer because he had you put it in the best form to apply calculus to solve it. I won't give that method though. As a precalculus question, using the axis of symmetry is the most intuitive way, I believe. And Tim's final formula is the turning point form, so he might well have been hinting that you think about the axis of symmetry or use calculus, which I think is absolutely correct.

Okay?
 
Back
Top