Solving Infinite Square Well Potential - KEmin = 1.507e-18 J

Tyst
Messages
26
Reaction score
0

Homework Statement


What is the minimum KE of an electron trappen in an infinite square well potential of width a = 0.2nm?

Homework Equations



The Attempt at a Solution



General solution to the simple harmonic oscillator equation:
Ψ(x) = Asin(kx)+Bcos(kx)
Where the potential of the well goes to infinity, Ψ(x) must be continuous so,
Ψ(0) = Ψ(a) = 0
Ψ(0) = Asin(0)+Bcos(0) = B = 0
Ψ(x) = Asin(kx)
Ψ(a) = Asin(ka)
sin(ka) = 0 (Since to let A=0 would result in Ψ(x) = 0, which is trivial)
ka = 0, ± pi, ±2pi…
If k=0 then, again Ψ(x) = 0 and since sin(-x) = -sin(x) and we can absorb the minus sign into the arbitrary constant A, the solutions are
kn = n pi/a when n = any positive integer
In this case
kn = pi/(0.2*10-9)
kn = 1.57*1010
According to equation 2.27 of Griffiths
En = ħ2kn2 /2m = n2pi2 ħ2 / 2ma2
En = ħ2(1.57*1010) 2 / 2*(9.109*10-31)
En = 1.507*10-18 J (Since the potential inside the well is 0, the kinetic energy accounts for the total energy of the particle)
KEmin = 1.507*10-18 J

If someone could just run through this and check that i haven't made any stupid mistakes, i'd really appreciate it.
 
Physics news on Phys.org
Haven't checked the numbers, but the algebra is correct.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top