Solving Integral: Different Answer with U-Substitution

  • Thread starter Thread starter LocationX
  • Start date Start date
  • Tags Tags
    Integral
LocationX
Messages
141
Reaction score
0
this integral can be solved without u-subsitution however, I get a different answer when I use u-sub.

\int \frac{6}{x-6} dx

u=x-6

du=dx

\int \frac{1}{6u}=\frac{1}{6}ln(x-6)

if U-sub wasnt used, then the answer would be 6ln(x-6)

what am I doing wrong in the subsitution?
 
Physics news on Phys.org
With the substitution, the integral is:

\int \frac{6}{u} du

not

\int \frac{1}{6u} du
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...

Similar threads

Back
Top