Solving Integral of sin^11x: Step-by-Step Guide

  • Thread starter Thread starter cango91
  • Start date Start date
  • Tags Tags
    Integral
cango91
Messages
14
Reaction score
0

Homework Statement


\int sin^{11}x.dx


Homework Equations





The Attempt at a Solution


\int (sin^{2}x)^{5}.sinx.dx
\int (1-cos^{2}x)^{5}.sinx.dx

let cosx be u, statement became

- \int (1-u^{2})^{5}.du

and I'm stuck here. Any help is appreciated,
thank you
 
Physics news on Phys.org
Why don't you just multiply the expression (1-u^2)^5 out to get just powers of u?
 
Last edited:
This is potentially one of the 10 questions to be asked in tomorrow's 45 minutes exam, there should be a quicker way...

Plus expanding the whole expression would be too long and impractical..

Thanks anyways,
any other suggestions?
 
(1+a)^5=1+5a+10a^2+10a^3+5a^4+a^5. Put a=-u^2. It's pretty easy if you remember the binomial theorem. I can't think of anything easier.
 
No quicker way,EXPAND it!
 
<br /> \int {\sin ^k xdx} = \int {\sin ^{k - 1} x\sin xdx}<br />

IBP:
<br /> <br /> - \cos x\sin ^{k - 1} x - \int { - \cos x\left( {k - 1} \right)\sin ^{k - 2} x} \cos xdx<br /> <br />

rewrite:<br /> <br /> - \cos x\sin ^{k - 1} x + \left( {k - 1} \right)\int {\cos ^2 x\sin ^{k - 2} x} dx<br /> <br />

Use the identity:

<br /> <br /> \cos ^2 x\sin ^{k - 2} x = \left( {1 - \sin ^2 x} \right)\sin ^{k - 2} x = \sin ^{k - 2} x - \sin ^k x<br /> <br />

And so:

<br /> <br /> - \cos x\sin ^{k - 1} x + \left( {k - 1} \right)\int {\sin ^{k - 2} x} dx - \left( {k - 1} \right)\int {\sin ^k x} dx<br /> <br />

<br /> <br /> k\int {\sin ^k xdx} = - \cos x\sin ^{k - 1} x + \left( {k - 1} \right)\int {\sin ^{k - 2} x} dx<br /> <br />

Conclusion:
<br /> <br /> \int {\sin ^k xdx} = - \frac{{\cos x\sin ^{k - 1} x}}{k} + \frac{{k - 1}}{k}\int {\sin ^{k - 2} x} dx<br /> <br />
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...

Similar threads

Back
Top