Solving Integral of x/(sin(x^2))^2: Tips and Tricks

  • Thread starter Thread starter Redoctober
  • Start date Start date
  • Tags Tags
    Integrate
Redoctober
Messages
46
Reaction score
1
V = \int \frac{x}{(sin(x^2))^2}.dx

I tried to solve this by parts or by substitution but that doesn't seem to work.
Any Idea how to solve it :/
 
Physics news on Phys.org
Looks to me like the substitution u= x^2 is obvious. With that,
\int \frac{x}{sin^2(x^2)}dx= \frac{1}{2}\int \frac{1}{sin^2(u)}du= \frac{1}{2}\int csc^2(x)dx
That's fairly straightforward.
 
∫x/sin(x²)² dx
Put x²=t
∴ 2x dx=dt
x dx = dt/2
Substituting we get,
1/2∫dt/sin t²
= 1/2∫cosec²t dt
= -1/2 cot t + C
= -1/2 cot²x + C
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top