Petar Mali
- 283
- 0
Homework Statement
Solve integral
\int \frac{(1+\Phi)+\Phi e^{-x}}{(1+\Phi)-\Phi e^{-x}}dx
where \Phi=const
Homework Equations
The Attempt at a Solution
\int \frac{(1+\Phi)+\Phi e^{-x}}{(1+\Phi)-\Phi e^{-x}}dx=\int\frac{1+\Phi}{(1+\Phi)-\Phi e^{-x}}dx+\int\frac{\Phi e^{-x}}{(1+\Phi)-\Phi e^{-x}}dx
(1+\Phi)\int\frac{dx}{(1+\Phi)-\Phi e^{-x}}
(1+\Phi)-\Phi e^{-x}=t 1+\Phi-t=\Phi e^{-x}
\Phi e^{-x}dx=dt
\frac{1}{1+\Phi-t}=\frac{A}{1+\Phi-t}+\frac{B}{t}
I got
A=B=\frac{1}{1+\Phi}
So I got if I don't write constant
(1+\Phi)\int\frac{dx}{(1+\Phi)-\Phi e^{-x}}=ln[\frac{(1+\Phi)-\Phi e^{-x}}{\Phi e^{-x}}]
For second integral I got without constant
\int\frac{\Phi e^{-x}}{(1+\Phi)-\Phi e^{-x}}dx=ln[(1+\Phi)-\Phi e^{-x}]
So
\int \frac{(1+\Phi)+\Phi e^{-x}}{(1+\Phi)-\Phi e^{-x}}dx=2ln[\frac{1+\Phi-\Phi e^{-x}}{\Phi e^{-x}}]+C
Is this solution correct? Thanks for your answer!