Solving Integral with Constant \Phi

  • Thread starter Thread starter Petar Mali
  • Start date Start date
  • Tags Tags
    Constant Integral
Petar Mali
Messages
283
Reaction score
0

Homework Statement


Solve integral

\int \frac{(1+\Phi)+\Phi e^{-x}}{(1+\Phi)-\Phi e^{-x}}dx

where \Phi=const




Homework Equations





The Attempt at a Solution



\int \frac{(1+\Phi)+\Phi e^{-x}}{(1+\Phi)-\Phi e^{-x}}dx=\int\frac{1+\Phi}{(1+\Phi)-\Phi e^{-x}}dx+\int\frac{\Phi e^{-x}}{(1+\Phi)-\Phi e^{-x}}dx

(1+\Phi)\int\frac{dx}{(1+\Phi)-\Phi e^{-x}}

(1+\Phi)-\Phi e^{-x}=t 1+\Phi-t=\Phi e^{-x}

\Phi e^{-x}dx=dt

\frac{1}{1+\Phi-t}=\frac{A}{1+\Phi-t}+\frac{B}{t}

I got

A=B=\frac{1}{1+\Phi}

So I got if I don't write constant

(1+\Phi)\int\frac{dx}{(1+\Phi)-\Phi e^{-x}}=ln[\frac{(1+\Phi)-\Phi e^{-x}}{\Phi e^{-x}}]

For second integral I got without constant

\int\frac{\Phi e^{-x}}{(1+\Phi)-\Phi e^{-x}}dx=ln[(1+\Phi)-\Phi e^{-x}]


So


\int \frac{(1+\Phi)+\Phi e^{-x}}{(1+\Phi)-\Phi e^{-x}}dx=2ln[\frac{1+\Phi-\Phi e^{-x}}{\Phi e^{-x}}]+C

Is this solution correct? Thanks for your answer!
 
Physics news on Phys.org
Rewrite the given problem as
1 + [2φ*e^-x/(1 + φ - φe^-x)...(1)
If t = 1 + φ - φe^-x
dt = ...?
Substitute these values in eq. 1 and find integration.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top