MHB Solving Pot Roast & Math Problems: A Walkthrough

  • Thread starter Thread starter Cuberoot1
  • Start date Start date
Cuberoot1
Messages
4
Reaction score
0
Could somebody give me a walkthrough for this problem?

The number of hours h needed to cook a pot roast that weighs p pounds can be approximated by using the formula h = 0.9p^0.6.

b. If pot roast A weighs twice as much as pot roast B, then roast A should be cooked for a period of time that is how many times longer than the time required for roast B to cook?

Also.

I'm stuck in this problem.

( x^4-n • y^n+4 / xy^n-4 )^2

I think this is next.

( x^4-n-n-4 • y^n+4-n-4 )^2

If I'm right, what now? If I'm wrong, what did I do wrong? If I could have written my problem in a better way that is easier to understand, then please tell me.
 
Mathematics news on Phys.org
Cuberoot said:
Could somebody give me a walkthrough for this problem?

The number of hours h needed to cook a pot roast that weighs p pounds can be approximated by using the formula h = 0.9p^0.6.

b. If pot roast A weighs twice as much as pot roast B, then roast A should be cooked for a period of time that is how many times longer than the time required for roast B to cook?
Good evening,

If $$h_B=0.9 \cdot p^{0.6}$$ then you only have to replace p by the weight of A relative to B. Afterwards simplify a little bit.

Also.

I'm stuck in this problem.

( x^4-n • y^n+4 / xy^n-4 )^2

I think this is next.

( x^4-n-n-4 • y^n+4-n-4 )^2

If I'm right, what now? If I'm wrong, what did I do wrong? If I could have written my problem in a better way that is easier to understand, then please tell me.

If you mean:

$$\left(\frac{x^{4-n} \cdot y^{n+4}}{x \cdot y^{n-4}}\right)^2$$

and you want to use the power rules then you should come out with

$$x^{2(4-n-1)} \cdot y^{2(n+4-(n-4))}$$

Simplify!
 
Last edited:
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top