Solving Problem 3 in MIT's Statistical Physics Course

ehrenfest
Messages
2,001
Reaction score
1
[SOLVED] statistical physics

Homework Statement


http://ocw.mit.edu/NR/rdonlyres/Physics/8-044Spring-2004/AC9B128C-9358-4177-BFE6-A142E0FD897B/0/ps4.pdf
I am working on Problem 3.
So I want to calculate the integral of dW along each of those paths. But how can I relate dW to dV? dW is equal to F dot dl but I don't really know F or dl here?


Homework Equations





The Attempt at a Solution

 
Last edited by a moderator:
Physics news on Phys.org
Another expression for work is the following:

\int_{V_1}^{V_2} PdV

Try to start from this expression for this problem.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top