Solving Psi(x,t) for a Harmonic Oscillator

Talib
Messages
7
Reaction score
0
Hello,

A harmonic oscillator is in the initial state:
Psi(x, 0) = Phi_n (x)
where Phi_n(x) is the nth solution of the time-independent Schr¨odinger equation.
What is Psi(x, t)?

Any clue?

Thanks
 
Physics news on Phys.org
Psi(x, t) is the solution of the time dependant Schrödinger equation (TDSE). The TDSE is a separable partial differential equation. More precisely, the solution to the TDSE is the product of the TISE and of \exp(iEt/\hbar)[/tex]:<br /> <br /> \Psi(x,t)=\psi(x)e^{iEt/\hbar}
 
Thanks a lot :):)
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top