Solving real life problem with differential equation

Woolyabyss
Messages
142
Reaction score
1

Homework Statement


A car starts from rest.When it is at a distance s from its starting point,its speed is v and it acceleration is a = (25v + v^3).

Show that dv = (25 + v^2)ds and find its speed when s = 0.01

2. The attempt at a solution

a = v(dv/ds) = (25v + v^3) divide both sides by v and cross multiply s

dv = (25 + v^2) ds1/(25+v^2) dv = 1 ds

integrating both sides

(1/5)tan-inverse(v/5) = s

using limits s = 0 when v = 0 and s = 0.01 when v=v

1/5(tan-inverse(v/5) = .01

tan-inverse(v/5) = .05

v/5 = tan.05

v = 5tan.05 = .0044My book says the answer is 1.28m/s. I think I might have gone wrong with the limits?
Any help would be appreciated.

If I solve the last part using radians the answer is still only 0.25
 
Physics news on Phys.org
You should certainly use radians. Standard formulae such as the one you used to integrate to get arctan assume radians. I also get 0.25. The book answer matches 5 tan(.25). Maybe it was supposed to be s =.05.
 
haruspex said:
You should certainly use radians. Standard formulae such as the one you used to integrate to get arctan assume radians. I also get 0.25. The book answer matches 5 tan(.25). Maybe it was supposed to be s =.05.

Thanks it might be wrong so I think I'll move on to the next question then and when I first started differentiation I remember my book making a very big deal about only using radians in calculus but it just never seems to stick, thanks anyway.
 
Woolyabyss said:

Homework Statement


A car starts from rest.When it is at a distance s from its starting point,its speed is v and it acceleration is a = (25v + v^3).

Show that dv = (25 + v^2)ds and find its speed when s = 0.01

2. The attempt at a solution

a = v(dv/ds) = (25v + v^3) divide both sides by v and cross multiply s

dv = (25 + v^2) ds


1/(25+v^2) dv = 1 ds

integrating both sides

(1/5)tan-inverse(v/5) = s

using limits s = 0 when v = 0 and s = 0.01 when v=v

1/5(tan-inverse(v/5) = .01

tan-inverse(v/5) = .05

v/5 = tan.05

v = 5tan.05 = .0044


My book says the answer is 1.28m/s. I think I might have gone wrong with the limits?
Any help would be appreciated.

If I solve the last part using radians the answer is still only 0.25

There is something seriously wrong with the original question: if the acceleration is a = v^3 + 25 v, then v(t) obeys the differential equation
\frac{dv}{dt} = v^3 + 25 v,
whose possible solutions are ##v(t) = v_1(t), v_2(t) \text{ or } v_3(t)##, where
v_1(t) = 0\:\: \forall t \\<br /> v_2(t) = \frac{ 5e^{25(t+c)} }{ \sqrt{1 - e^{50(t+c)} } }\\<br /> v_3(t) = -\frac{ 5e^{25(t+c)} }{ \sqrt{1 - e^{50(t+c)} } }<br /> and where c is a constant. For solutions v_2 and v_3 there are no values of c that make v(0) = 0; in fact, there is no t at all that makes v(t) = 0, so the car could never, ever be at rest! It can, of course, be at rest for solution v_1(t), but in that case it remains at rest forever.
 
Ray Vickson said:
There is something seriously wrong with the original question:
Good point. If a = v*f(v) and v(t0) = 0 then a and all higher derivatives are zero at t = t0. No movement can occur.
To make the question work, the initial condition needs to be lim s→0 v = 0, or somesuch. A 'real world' example is an object nudged away from unstable equilibrium, like a pencil balanced on its point.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top