Solving Several Integrals Homework

  • Thread starter Thread starter noblerare
  • Start date Start date
  • Tags Tags
    Integrals
noblerare
Messages
49
Reaction score
0

Homework Statement


\int\frac{xdx}{\sqrt{1-x}}


Homework Equations



n/a

The Attempt at a Solution


I tried to multiple top and bottom by the conjugate:
\int\frac{x\sqrt{1+x}dx}{\sqrt{1-x^{2}}}

I tried trig substitution and u-substitution, but nothing seems to work.

I end up with -\intcos\theta\sqrt{1+cos\theta}

Can anyone help me out on this? And show steps, please? Thanks so much!
 
Physics news on Phys.org
If you make a substitution u = 1-x (then x = 1-u), you now have the sum of two trivial integrals.
 
thank you so much! oh, and sorry about the double post
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top