Solving Simple Harmonic Motion Problems

AI Thread Summary
The discussion focuses on solving simple harmonic motion problems involving a 1.00 kg object attached to a spring. A force of 19.0 N is needed to hold the object at rest when displaced 0.200 m from equilibrium, and the object undergoes oscillations after being released. The user successfully calculated the angular frequency (w) and used conservation of energy to find velocity but struggled with the acceleration calculation. It was clarified that while acceleration can be determined using the formula a = w^2(1/3A), velocity cannot be calculated similarly due to the differing phase relationships between position, velocity, and acceleration. The conversation emphasizes the importance of understanding these phase relationships in simple harmonic motion.
Sheneron
Messages
360
Reaction score
0
[SOLVED] Simple Harmonic

Homework Statement


A 1.00 kg object is attached to a spring and placed on a horizontal, smooth surface. A horizontal force of 19.0 N is required to hold the object at rest when it is pulled 0.200 m from its equilibrium position (the origin of the x axis). The object is now released from rest with an initial position of xi = 0.200 m, and it subsequently undergoes simple harmonic oscillations.

(f) Find the speed of the object when its position is equal to one third of the maximum value.
(g) Find the acceleration of the object when its position is equal to one third of the maximum value.

The Attempt at a Solution


I have solved for w, and to find F) I used the conservation of energy to find the velocity. My question then is how to I find part G)?

Can I do: a = w^2(1/3*A) which gives me a correct answer.
However if I use the same method to find v: v= w(1/3*A) I get a wrong answer. Can anyone tell me why this is and if I need to use another method to solve for a.
 
Physics news on Phys.org
It has to do with the relative phases of x, v, and a. x and a are 180 degrees out of phase, so when one is at a positive maximum, then other is at a negative maximum. So at the time when the position is 1/3 of the amplitude, the acceleration magnitude is 1/3 of its maximum value.

At the time when the position is 1/3 of its maximum value, the velocity is not at 1/3 its value, so you cannot do the same thing with the velocity.

(The two easiest points to see are at the middle and the endpoint. When the particle is at the amplitude, the acceleration magnitude is a maximum but the velocity is not. When the particle is at the equilibrium position, so x=0, the acceleration is 0 but the velocity is not.)

(Also, when you did a=w^2 (1/3A), since w^2=k/m, you were also doing ma=kx, so this becomes Newton's law for the acceleration. The velocity equation you mentioned as an incorrect example does not.)
 
Ok, so that is a legitimate way for finding the acceleration, and will work all the time?
 
If you compare the time dependent formulas for x and a (the ones with sines or cosines), you can see that:

<br /> a = - \omega^2 x<br />

so your way will work for a; also it is equivalent to Newton's law \vec F=m\vec a.
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top