Nano-Passion
- 1,291
- 0
I need help solving these two equations simultaneously
y = c_1e^{r_1t_o}+c_2e^{r_2t_o}
y' = c_1r_1e^{r_1t_o}+c_2r_2e^{r_2t_o} My plan of solving these two equations is by substitution. By rearranging I obtain the following:
c_1 = [y-c_2e^{r_2t_o}]e^{-r_1t_o}
c_1= \frac{[y' -c_2r_2e^{r_2t_o}]e^{-r_1t_o}}{r_1}
Likewise,
c_2=[y-C_1e^{r_1t_o}]e^{-r_2t_o}
c_2=\frac{[y'-c_1r_1e^{r_1e^r_1t_o}]e^{-r_2t_o}}{r_2}
Don't know what to do from here.
y = c_1e^{r_1t_o}+c_2e^{r_2t_o}
y' = c_1r_1e^{r_1t_o}+c_2r_2e^{r_2t_o} My plan of solving these two equations is by substitution. By rearranging I obtain the following:
c_1 = [y-c_2e^{r_2t_o}]e^{-r_1t_o}
c_1= \frac{[y' -c_2r_2e^{r_2t_o}]e^{-r_1t_o}}{r_1}
Likewise,
c_2=[y-C_1e^{r_1t_o}]e^{-r_2t_o}
c_2=\frac{[y'-c_1r_1e^{r_1e^r_1t_o}]e^{-r_2t_o}}{r_2}
Don't know what to do from here.

Last edited: