Solving Slider Crank Problem: Tips & Advice

AI Thread Summary
The discussion focuses on solving a slider crank problem involving angular velocity and its impact on acceleration and velocity graphs. Participants suggest that while the exact value of angular velocity (omega) may be unknown, it can be assumed as a constant for calculations. This assumption allows for the determination of theta at maximum velocity and minimum acceleration without affecting the overall shape of the graphs. The conversation emphasizes using piston motion equations as a resource for deriving the necessary results. Overall, the key takeaway is that assuming a constant angular velocity simplifies the problem-solving process.
deesal
Messages
4
Reaction score
0
I'm having trouble figuring out this problem. I know how to solve the problem if the angular velocity was known but there seem to be too many unknowns to be able to generate graphs. If anyone can offer advice that would be great.
 

Attachments

  • piston.jpg
    piston.jpg
    43.8 KB · Views: 821
Engineering news on Phys.org
If you know how to solve the problem, you should have an equation for acceleration as a function of theta (you may not know the value of omega, but you know that the angular velocity is a constant). There's no reason you can't plot this function if you scale your y-axis in units of omega^2...
 
I'm having trouble figuring this out when I put the y components together the theta gets canceled out and velocity is not linear in this problem and I have no idea where my mistake was
 
The problem is basically asking you to find two things:

  • Theta at max velocity
  • Theta at min acceleration
To find these two values, you can just assume a value for omega (angular speed, d/dt of theta) because those values of theta will not change with angular speed. The graphs of velocity and acceleration vs. theta will change in magnitude but not in shape, so I would just assume soemthing for omega that makes calculation easy (like 60 rpm, 2pi rad/s). The problem states that you should assume the angular velocity is constant, which tells me you are meant to assume a constant value for it.

The piston motion equations should help you find the result:
http://en.wikipedia.org/wiki/Piston_motion_equations
 
Posted June 2024 - 15 years after starting this class. I have learned a whole lot. To get to the short course on making your stock car, late model, hobby stock E-mod handle, look at the index below. Read all posts on Roll Center, Jacking effect and Why does car drive straight to the wall when I gas it? Also read You really have two race cars. This will cover 90% of problems you have. Simply put, the car pushes going in and is loose coming out. You do not have enuff downforce on the right...
I'm trying to decide what size and type of galvanized steel I need for 2 cantilever extensions. The cantilever is 5 ft. The space between the two cantilever arms is a 17 ft Gap the center 7 ft of the 17 ft Gap we'll need to Bear approximately 17,000 lb spread evenly from the front of the cantilever to the back of the cantilever over 5 ft. I will put support beams across these cantilever arms to support the load evenly
Thread 'What's the most likely cause for this carbon seal crack?'
We have a molded carbon graphite seal that is used in an inline axial piston, variable displacement hydraulic pump. One of our customers reported that, when using the “A” parts in the past, they only needed to replace them due to normal wear. However, after switching to our parts, the replacement cycle seems to be much shorter due to “broken” or “cracked” failures. This issue was identified after hydraulic fluid leakage was observed. According to their records, the same problem has occurred...
Back
Top