Solving the Bassel Equation for V=1/2: Step-by-Step Guide

  • Thread starter Thread starter sirvics
  • Start date Start date
sirvics
Messages
1
Reaction score
0

Homework Statement



Solve The Bassel Equation for the case V=1/2?
Use the multiplication u=√x y . (the root covers only the x)
Please help. i need detail solution

Homework Equations





The Attempt at a Solution


 
Physics news on Phys.org
Sorry. PF is not a homework service. Make an attempt at a solution and you might get some feedback.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top