I Solving the Brachistochrone problem with friction

physics_cosmos
Messages
6
Reaction score
0
This Wolfram Alpha Page contains a derivation of the parametric form of the brachistochrone curve that result from either assuming friction or its absence.

I am asking for help understanding how the solution to the differential equation obtained from applying the Euler-Lagrange equation to the integrand of the the integral representing the total time of descent is obtained. This differential equation can be found on step (30) of the page. I am asking for help in understanding the next step, how setting dy / dx = cot(theta/2) results in the given parametric forms for x and y (in terms of theta), as given in steps (32) and (33).
 
Physics news on Phys.org
Is that step simply choosing an integrating factor that fits the differential equation you're trying to solve?
 
jedishrfu said:
Is that step simply choosing an integrating factor that fits the differential equation you're trying to solve?

I don't believe the differential equation is linear, or resolvable into linear form, so I don't think that that would help me get to a solution. I hope you can help me find another way, though.
 
Last edited:
Thread 'Direction Fields and Isoclines'
I sketched the isoclines for $$ m=-1,0,1,2 $$. Since both $$ \frac{dy}{dx} $$ and $$ D_{y} \frac{dy}{dx} $$ are continuous on the square region R defined by $$ -4\leq x \leq 4, -4 \leq y \leq 4 $$ the existence and uniqueness theorem guarantees that if we pick a point in the interior that lies on an isocline there will be a unique differentiable function (solution) passing through that point. I understand that a solution exists but I unsure how to actually sketch it. For example, consider a...
Back
Top