Solving the De Broglie Problem: Calculating Length of a 1-D Box

  • Thread starter Thread starter psingh
  • Start date Start date
  • Tags Tags
    De broglie
psingh
Messages
18
Reaction score
0

Homework Statement


What is the length of a one-dimensional box in which an electron in the n=1 state has the same energy as a photon with a wavelength of 500 nm


Homework Equations




E=h^2/8mL^2 and E=hc/lambda

making it
L=sqrt( (h*lambda)/(8cm) )


The Attempt at a Solution



I plugged in for those numbers and did not come out with the correct number. any suggestions?
 
Physics news on Phys.org
Are you sure that 8 should not be a 4?
 
The eightfold way is right here. 1/8=(L/2)^/2.
I think your first h should be hbar.
 
Hey
The energy if the first state of an indefinite one-dimensional box is:
E=\frac{\pi^{2}\hbar^{2}}{2mL^{2}}
Where m is the mass of the particle and L is the length of the box.
The photon has the energy given by
E=\hbar\omega=\frac{2\pi\hbar{c}}{\lambda}
Where \lambda is the wave length.
And therefore the length L is L=\sqrt{\frac{\pi\hbar\lambda{c}}{4m}}
 
Last edited:
eys_physics said:
And therefore the length L is L=\sqrt{\frac{\pi\hbar\lambda{c}}{4m}}

Which is wrong. It should be \sqrt{\frac{\pi\hbar\lambda}{4mc}, which is identical to what the OP psingh had written correctly. Replacing h by 2\pi\hbar won't do any good.

Perhaps the OP made some arithmetical mistake...
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top