Solving the Integral of s*(4-s)^\frac{1}{2}

  • Thread starter Thread starter yaho8888
  • Start date Start date
  • Tags Tags
    Integral
yaho8888
Messages
62
Reaction score
0

Homework Statement



Find the intergal of s*(4-s)^\frac{1}{2}

Homework Equations



\int s*(4-s)^\frac{1}{2} dx

The Attempt at a Solution



using u sub
u = 4-s
s = 4-u

\int (4-u)*(u)^\frac{1}{2} du

\int 4u^\frac{1}{2}*u^\frac{3}{2}

then what?
 
Last edited:
Physics news on Phys.org
You mean, \int (4u^\frac{1}{2}-u^\frac{3}{2})du
 
Yes, \int (4u^\frac{1}{2}-u^\frac{3}{2})du

to solve this do I just do the integral of the equation above then plug in 4-x for u?
 
yes, 4-s. I think your original integral was meant to be ds not dx right?

also when you made your u substitution du=-ds so your integral should be u^(3/2)-4*u^(1/2)
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top