whozum
- 2,219
- 1
The best way to do this is to find the center of mass of each rod about the axis of rotation.
Forexample, say that the right rod, the long one is of length x = 16cm. The center ofmass is then at x=8cm, because it is uniform.
The torque can be expressed as
\tau = F R = F \frac{x}{2} for any uniform rod length x, the cm will be at x/2
the force is simply F = mg
\tau = m g \frac{x}{2}
The moment of inertia of a rod of length x is
I = \frac{1}{12} mx^2
and we know that \tau = I\alpha so \alpha = \frac{\tau}{I} and so
\alpha = \frac{\tau}{I} = \frac{mg\frac{x}{2}}{\frac{1}{12}mx^2} = 6 \frac{g}{L} [/itex] if I didnt make any mistakes.<br /> <br /> Do you knowwhere to go from here?<br /> when is this due?
Forexample, say that the right rod, the long one is of length x = 16cm. The center ofmass is then at x=8cm, because it is uniform.
The torque can be expressed as
\tau = F R = F \frac{x}{2} for any uniform rod length x, the cm will be at x/2
the force is simply F = mg
\tau = m g \frac{x}{2}
The moment of inertia of a rod of length x is
I = \frac{1}{12} mx^2
and we know that \tau = I\alpha so \alpha = \frac{\tau}{I} and so
\alpha = \frac{\tau}{I} = \frac{mg\frac{x}{2}}{\frac{1}{12}mx^2} = 6 \frac{g}{L} [/itex] if I didnt make any mistakes.<br /> <br /> Do you knowwhere to go from here?<br /> when is this due?