Solving the Problem of Descending Balloons

  • Thread starter Thread starter discoverer02
  • Start date Start date
AI Thread Summary
The discussion revolves around calculating the weight of ballast (w2) needed to make a descending balloon accelerate upward with a constant acceleration (a). The initial approach incorrectly applied Newton's second law, leading to the wrong equation for w2. The correct formulation involves recognizing that the buoyant force remains unchanged while the downward force changes as ballast is released. Ultimately, the correct relationship derived is w2 = 2w1a/(g + a), clarifying the forces acting on the balloon during ascent and descent. The conversation highlights the importance of accurately applying Newton's laws to solve the problem effectively.
discoverer02
Messages
138
Reaction score
1
Here's the problem:

A balloon is descending with constant acceleration, a, (which of course is less than g). The weight of the balloon, with its basket and contents, is w1. In order to cause the balloon to accelerate upward with the same accelerations, a, what weight (call it w2 in your solution) of ballast needs to be released? Neglect air resistance. (You need to put in an unknown buoyant force on the balloon.)

The way I figure it there are two forces acting on the balloon there's the F up, and w1 or (w1 - w2) acting downward. When I use Newton's second law with just these two forces I get w2 = 2ma. The answer that I'm supposed to get is w2 = 2w1a/(g+a).

F - w1 = -ma, F - (w1 - w2) = ma

F = w1 - ma ===> w1 - ma -w1 + w2 = ma ==> w2 = 2ma.

I'm missing something. Any suggestions would be greatly appreciated.

Thanks
 
Physics news on Phys.org
balloon going down with acceleration a:
F1 = -w1*(a+g)

you want to go up with acceleration a so you need 2 times force F1 in opposite direction:
F2 = 2F1=2w1(a+g)

got stuck here :(

the fault in your solution is this i think: F - w1 = -ma, that isn't right. and using w1 and m is also confusing i think
 
Actually the bouyant force remains unchanged. The downward force changes from w1 to w1 - w2, so the mass, in the case of the ascending balloon, changes to (m1 - m2)/g.

f - w1 = m(-a)
f - (w1-w2) = (m1-m2)a/g

the 'a' is the same, but in the opposite direction, and everything looks right, but it doesn't turn into the equations it's supposed to for w2.
 
very confusing all those w's and m's

but i think F-w1 != m(-a)
 
OK w1 = m1g.

Newton's Second Law: F = ma

The only forces on the balloon in the case where it's descending are the buoyant force F and the weight of the balloon so:

F - m1g = m1(-a) or F - w1 = m1(-a)
 
I finally figured this out. Shame on me. It took way too long!

Using Newton's Second Law.

Balloon descending: F - m1g = m1(-a)
Balloon rising: F - (m1 - m2)g = (m1 - m2)a

m1g - m1a = (m1 - m2)a + (ma - M2)g
m1g - m1g = m1a - m2a + m1g - m2g
-2m1a = -m2(g + a) Multiply both sides by g
2m1ga = m2g(g + a)
2w1a/(g + a) = w2
 
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Back
Top