zaboda42
- 32
- 0
Consider a three-tank system modeled by the equations:
x_1' = -5x_1+5x_3
x_2' = 5x_1-2x_2
x_3' = 2x_2-5x_3
(A) Initially there are 10 pounds of grain in each tank. What will the amounts be as t \rightarrow \infty?
(B) Solve the system and verify your conclusion from (A).
I'm not really sure how I can say anything about (A), so I would appreciate some help there. Here's how I worked out (B), but I'm not really sure how I can finish to "verify my conclusion from (A)":
{\bf{x}}' = \left[ \begin{array}{cccc} -5&0&5\\5&-2&0\\0&2&-5 \end{array} \right]\left[ \begin{array}{cccc} x_1\\x_2\\x_3 \end{array} \right]
{\bf{A}}-\lambda {\bf{I}} = \left[ \begin{array}{cccc} -5-\lambda&0&5\\5&-2-\lambda&0\\0&2&-5-\lambda \end{array} \right]
Which gives -\lambda(\lambda^2+12\lambda+45) = 0 for solutions \lambda = 0 and \lambda = -6\pm3i
In the case of \lambda = 0:
({\bf{A}}-0{\bf{I}}){\bf{v}} \Rightarrow \left[ \begin{array}{cccc} -5&0&5\\5&-2&0\\0&2&-5 \end{array} \right]\left[ \begin{array}{cccc} a\\b\\c \end{array} \right] = \left[ \begin{array}{cccc} 0\\0\\0 \end{array} \right]
Which gives the system:
-5a+5c = 0
5a-2b = 0
2b-5c = 0
Thus, {\bf{x}}_0 = \left[ \begin{array}{cccc} 2\\5\\2 \end{array} \right].
In the case of \lambda = -6-3i:
({\bf{A}}-(-6-3i){\bf{I}}){\bf{v}} \Rightarrow \left[ \begin{array}{cccc} 1+3i&0&5\\5&4+3i&0\\0&2&1+3i \end{array} \right]\left[ \begin{array}{cccc} a\\b\\c \end{array} \right] = \left[ \begin{array}{cccc} 0\\0\\0 \end{array} \right]
Which gives {\bf{x}} = \left[ \begin{array}{cccc} 5\\-4+3i\\-1-3i \end{array} \right]
So we have:
{\bf{x}}(t) = \left[ \begin{array}{cccc} 5\\-4+3i\\-1-ei \end{array} \right]e^{(-6-3i)t}
{\bf{x}}(t) = \left[ \begin{array}{cccc} 5\\-4+3i\\-1-ei \end{array} \right]e^{-6t}(\cos3t-i\sin3t)
{\bf{x}}(t) = e^{-6t}\left[ \begin{array}{cccc} 5\cos3t-5i\sin3t\\3\sin3t-4\cos3t+i(4\sin3t+3\cos3t)\\-3\sin3t-\cos3t+i(\sin3t-3\cos3t) \end{array} \right]
And the real and imaginary parts of {\bf{x}}(t) are real-valued solutions:
{\bf{x}}_1(t) = e^{-6t}\left[ \begin{array}{cccc} 5\cos3t\\3\sin3t-4\cos3t\\-3\sin3t-\cos3t \end{array} \right]
{\bf{x}}_2(t) = e^{-6t}\left[ \begin{array}{cccc} 5\sin3t\\4\sin3t+4\cos3t\\\sin3t-3\cos3t \end{array} \right]
So the general solution can be written as:
{\bf{x}}(t) = c_1\left[ \begin{array}{cccc} 2\\5\\2 \end{array} \right] + c_2e^{-6t}\left[ \begin{array}{cccc} 5\cos3t\\3\sin3t-4\cos3t\\-3\sin3t-\cos3t \end{array} \right] + c_3e^{-6t}\left[ \begin{array}{cccc} 5\sin3t\\4\sin3t+3\cos3t\\\sin3t-3\cos3t \end{array} \right]
With the initial condition, we have a system:
2c_1+5c_3 = 10
5c_1+3c_2+4c_3 = 10
2c_1 - 3c_2+c_3 = 10
So that c_1 = 2, c_2 = -\frac{8}{5}, and c_3 = \frac{6}{5} so that our solution becomes:
{\bf{x}}(t) = 2\left[ \begin{array}{cccc} 2\\5\\2 \end{array} \right] -\frac{8}{5}e^{-6t}\left[ \begin{array}{cccc} 5\cos3t\\3\sin3t-4\cos3t\\-3\sin3t-\cos3t \end{array} \right] + \frac{6}{5}e^{-6t}\left[ \begin{array}{cccc} 5\sin3t\\4\sin3t+3\cos3t\\\sin3t-3\cos3t \end{array} \right]
I hope I did everything correctly, but what does this tell me about the grain as t \rightarrow \infty?
x_1' = -5x_1+5x_3
x_2' = 5x_1-2x_2
x_3' = 2x_2-5x_3
(A) Initially there are 10 pounds of grain in each tank. What will the amounts be as t \rightarrow \infty?
(B) Solve the system and verify your conclusion from (A).
I'm not really sure how I can say anything about (A), so I would appreciate some help there. Here's how I worked out (B), but I'm not really sure how I can finish to "verify my conclusion from (A)":
{\bf{x}}' = \left[ \begin{array}{cccc} -5&0&5\\5&-2&0\\0&2&-5 \end{array} \right]\left[ \begin{array}{cccc} x_1\\x_2\\x_3 \end{array} \right]
{\bf{A}}-\lambda {\bf{I}} = \left[ \begin{array}{cccc} -5-\lambda&0&5\\5&-2-\lambda&0\\0&2&-5-\lambda \end{array} \right]
Which gives -\lambda(\lambda^2+12\lambda+45) = 0 for solutions \lambda = 0 and \lambda = -6\pm3i
In the case of \lambda = 0:
({\bf{A}}-0{\bf{I}}){\bf{v}} \Rightarrow \left[ \begin{array}{cccc} -5&0&5\\5&-2&0\\0&2&-5 \end{array} \right]\left[ \begin{array}{cccc} a\\b\\c \end{array} \right] = \left[ \begin{array}{cccc} 0\\0\\0 \end{array} \right]
Which gives the system:
-5a+5c = 0
5a-2b = 0
2b-5c = 0
Thus, {\bf{x}}_0 = \left[ \begin{array}{cccc} 2\\5\\2 \end{array} \right].
In the case of \lambda = -6-3i:
({\bf{A}}-(-6-3i){\bf{I}}){\bf{v}} \Rightarrow \left[ \begin{array}{cccc} 1+3i&0&5\\5&4+3i&0\\0&2&1+3i \end{array} \right]\left[ \begin{array}{cccc} a\\b\\c \end{array} \right] = \left[ \begin{array}{cccc} 0\\0\\0 \end{array} \right]
Which gives {\bf{x}} = \left[ \begin{array}{cccc} 5\\-4+3i\\-1-3i \end{array} \right]
So we have:
{\bf{x}}(t) = \left[ \begin{array}{cccc} 5\\-4+3i\\-1-ei \end{array} \right]e^{(-6-3i)t}
{\bf{x}}(t) = \left[ \begin{array}{cccc} 5\\-4+3i\\-1-ei \end{array} \right]e^{-6t}(\cos3t-i\sin3t)
{\bf{x}}(t) = e^{-6t}\left[ \begin{array}{cccc} 5\cos3t-5i\sin3t\\3\sin3t-4\cos3t+i(4\sin3t+3\cos3t)\\-3\sin3t-\cos3t+i(\sin3t-3\cos3t) \end{array} \right]
And the real and imaginary parts of {\bf{x}}(t) are real-valued solutions:
{\bf{x}}_1(t) = e^{-6t}\left[ \begin{array}{cccc} 5\cos3t\\3\sin3t-4\cos3t\\-3\sin3t-\cos3t \end{array} \right]
{\bf{x}}_2(t) = e^{-6t}\left[ \begin{array}{cccc} 5\sin3t\\4\sin3t+4\cos3t\\\sin3t-3\cos3t \end{array} \right]
So the general solution can be written as:
{\bf{x}}(t) = c_1\left[ \begin{array}{cccc} 2\\5\\2 \end{array} \right] + c_2e^{-6t}\left[ \begin{array}{cccc} 5\cos3t\\3\sin3t-4\cos3t\\-3\sin3t-\cos3t \end{array} \right] + c_3e^{-6t}\left[ \begin{array}{cccc} 5\sin3t\\4\sin3t+3\cos3t\\\sin3t-3\cos3t \end{array} \right]
With the initial condition, we have a system:
2c_1+5c_3 = 10
5c_1+3c_2+4c_3 = 10
2c_1 - 3c_2+c_3 = 10
So that c_1 = 2, c_2 = -\frac{8}{5}, and c_3 = \frac{6}{5} so that our solution becomes:
{\bf{x}}(t) = 2\left[ \begin{array}{cccc} 2\\5\\2 \end{array} \right] -\frac{8}{5}e^{-6t}\left[ \begin{array}{cccc} 5\cos3t\\3\sin3t-4\cos3t\\-3\sin3t-\cos3t \end{array} \right] + \frac{6}{5}e^{-6t}\left[ \begin{array}{cccc} 5\sin3t\\4\sin3t+3\cos3t\\\sin3t-3\cos3t \end{array} \right]
I hope I did everything correctly, but what does this tell me about the grain as t \rightarrow \infty?