cscott
- 778
- 1
I can't get anywhere with these three identities. Any tips?
\frac{(\sec \theta - \tan \theta)^2 + 1}{\csc \theta(\sec \theta - \tan \theta)} = 2 \tan \theta
\frac{\sin^3 \theta + \cos^3 \theta}{\sin \theta + \cos \theta} = 1 - \sin \theta\cos \theta
(2a\sin \theta\cos \theta)^2 + a^2(\cos^2 \theta - \sin^2 \theta)^2 = a^2
\frac{(\sec \theta - \tan \theta)^2 + 1}{\csc \theta(\sec \theta - \tan \theta)} = 2 \tan \theta
\frac{\sin^3 \theta + \cos^3 \theta}{\sin \theta + \cos \theta} = 1 - \sin \theta\cos \theta
(2a\sin \theta\cos \theta)^2 + a^2(\cos^2 \theta - \sin^2 \theta)^2 = a^2