Solving x^4 - x^2 = k for x: Tips and Tricks to Simplify Equations

  • Thread starter Thread starter Ted123
  • Start date Start date
Ted123
Messages
428
Reaction score
0
Solve the equation x^4 - x^2 = k where k>0.

Am I being thick or how do I solve this for x?

Factorising gives x^2(x^2-1)=k but now where?
 
Physics news on Phys.org
Let y= x^2 and that becomes a quadratic function:
y^2- y= k or y^2- y- k= 0. Solve that for y, then solve x^2= y for x.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top