Some complex Fourier-like infinite integral

Ahmes
Messages
75
Reaction score
1

Homework Statement


The following integral is given:
\int_{0}^{\infty} e^{ikx} dx
k & x are real.

Homework Equations


We know that:
\int_{-\infty}^{\infty} e^{ikx} dx=2\pi \delta(k)

The Attempt at a Solution


The answer is:
\mathcal{I}=\pi \delta(k) + i \frac{1}{k}
I could easily prove the real part with the formula in 2, but couldn't be persuaded why the imaginary part is so (it barely makes sense). I tried:
\Im \int_{0}^{\infty} e^{ikx} dx = \int_{0}^{\infty} =\sin(kx) dx = \lim_{M\rightarrow \infty} \frac{1}{k}(-\cos(kM)+1)
But \lim_{M\rightarrow \infty} \cos(kM) is quite meaningless and I can't see why the whole expression should be k^{-1}...

I'll appreciate any help,
Thanks!
 
Last edited:
Physics news on Phys.org
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top