Solving Spaceship Chase Scene Relative Velocity Problem

  • Thread starter Thread starter frerelupin
  • Start date Start date
  • Tags Tags
    Spaceship
frerelupin
Messages
4
Reaction score
0
I have been pondering but cannot quite resolve the following question:

Imagine two spaceships, separated by 4 light-seconds initially. Spaceship A is traveling at 0.8c and Spaceship B (the one with the lead) is traveling at 0.4c.

Clearly an external observer will see this "chase" last for 10 seconds.
Spaceship A determines that the chase lasts ~6 seconds.
Spaceship B determines that the chase lasts ~9.17 seconds.

Calculating their velocities relative to one another is trivial and will be 0.588c and -0.588c.

Here is my conundrum: I want to be able to show that all frames are relative thus doing Einstein a solid. I feel I should be able to do this just using d=vt if I can answer the following question:

How far does Spaceship B appear to travel from A's perspective, and vice versa.

I can't quite get this to work out, but I feel that Spaceship A should see Spaceship B coming at them for 6 seconds at -0.588c, which means they covered 3.53 light-seconds, and that Spaceship B should see Spaceship A coming at them for 9.17 seconds at 0.588c meaning they covered 5.39 light-seconds.

There should be a manner in which I can determine the distance each appeared to travel using length contraction; that is to say, without using the times and velocities as derived above.

Am I off somewhere? Help!
 
Physics news on Phys.org
It may be trivial but that is not what I get for their relative velocities. I get
\frac{.8c- .4c}{(1+ .8(.4)}= (.4c)/(1.32)= 0.303c
and -.303c
 
Shouldn't the function in the denominator be subtraction? They are both traveling in the positive direction, so I would think there would be a subtraction in the numerator as well as the denominator.
 
I agree with +/- .588 c relative speed.

However, the problem is you cannot just use length contraction. Like it or not, you must use relativity of simultaneity as well. The initial distance of 4 light seconds is using the 'external' observer's simultaneity. The .8c rocket not only disagrees with the 4 light seconds, but it also disagrees with the external observer as when the .4 rocket was contracted 4 light seconds light seconds away.

The easiest way to work such a problem is to ignore the breakdown into velocity addition, contraction, simultaneity, and just Lorentz transform the whole scenario from 'external' to .8c rockect, then from external to .4 rocket.
 
PAllen: Hmmmm... if I understand what you're saying (and I'm not certain I do!) you mean to say just do the velocity addition anyway? I'm trying to find a way around that part. As I said in my original post, I want to be able to show that v=d/t works in the rest frame, the 0.8c frame, and the 0.4c frame as long as we use the properly framed d and t values.

If you are saying I could do this, could you elaborate on which transforms you are talking about? Do you mean to say use:

\begin{equation}
x'=\frac{x-ut}{\sqrt{1-\frac{u^2}{c^2}}}
\end{equation}
and
\begin{equation}
t'=\frac{t-\left(\frac{u}{c^2}\right)x}{\sqrt{1-\frac{u^2}{c^2}}}
\end{equation}
 
Woot! PAllen, you the man! Here's what I did:

\begin{equation}
v'=\frac{x'}{t'}=\frac{\frac{x-ut}{\sqrt{1-\frac{u^2}{c^2}}}}{\frac{t-\left(\frac{u}{c^2}\right)x}{\sqrt{1-\frac{u^2}{c^2}}}}=\frac{x-ut}{t-\frac{ux}{c^2}=0.588c
\end{equation}

Done! Thank you so much! This has been bothering me for a while now.

Cheers!
 
OK, so this has bugged me for a while about the equivalence principle and the black hole information paradox. If black holes "evaporate" via Hawking radiation, then they cannot exist forever. So, from my external perspective, watching the person fall in, they slow down, freeze, and redshift to "nothing," but never cross the event horizon. Does the equivalence principle say my perspective is valid? If it does, is it possible that that person really never crossed the event horizon? The...
In this video I can see a person walking around lines of curvature on a sphere with an arrow strapped to his waist. His task is to keep the arrow pointed in the same direction How does he do this ? Does he use a reference point like the stars? (that only move very slowly) If that is how he keeps the arrow pointing in the same direction, is that equivalent to saying that he orients the arrow wrt the 3d space that the sphere is embedded in? So ,although one refers to intrinsic curvature...
So, to calculate a proper time of a worldline in SR using an inertial frame is quite easy. But I struggled a bit using a "rotating frame metric" and now I'm not sure whether I'll do it right. Couls someone point me in the right direction? "What have you tried?" Well, trying to help truly absolute layppl with some variation of a "Circular Twin Paradox" not using an inertial frame of reference for whatevere reason. I thought it would be a bit of a challenge so I made a derivation or...
Back
Top