Special Relativity- Photon/Mirror Collision

Parallax-Err01
Messages
1
Reaction score
0

Homework Statement


A photon of frequency ν is reflected without change of frequency from a mirror, with an angle of incidence θ. Calculate the momentum transferred to the mirror.

Homework Equations


E= hν
Conservation of four-momentum

The Attempt at a Solution


If the mirror is in the x-y plane, the incident photon will have initial 4-momentum
Pγ = (hν , hνsinθ , 0 , -hνcosθ) as the sum of the squares of the spatial momenta must be equal to the square of the time coordinate momentum.
The initial 4-momentum of the mirror:
Pm = (m , 0 , 0 , 0) as it is initially at rest in the chosen frame of reference and m is the mass of the mirror.

After the collision:
Pγ' = ( hν , hνsinθ, 0 , hνcosθ)
Pm' = (E , p)

Applying conservation law:
Pm + Pγ = Pγ' + Pm'
(Pm')^2 = (Pm)^2 + (Pγ)^2 + (Pγ')^2 + 2Pm (Pγ-Pγ') - 2Pγ⋅Pγ'
-E^2 + p^2 = -m^2 + 0 + 0 +2⋅0 -2{ -(hν)^2 + (hνsinθ)^2 - (hνcosθ)^2} (p^2 is the square of the norm of the spatial momenta components)
-E^2 + p^2 = -m^2 + 4(hνcosθ)^2

This is where I don't get what to do. I know that E^2 = m^2 + p^2 but if I substitute that in, the momentum term disappears and I'm left with 4(hνcosθ)^2 = 0.

I also know I get the right answer if E=m, then p= 2hνcosθ , but I don't see how I am able to say that. Is it because the mirror is not a particle in its own right, but rather a system? Or does I have to change to a different reference frame where the mirror will be stationary relative to it?
 
Physics news on Phys.org
You do not need to know the mirror's mass or original 4-momentum. You also do not need to square any 4-momentum. All you need to do is to apply conservation of momentum.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top