gronke
- 2
- 0
Homework Statement
A particle that movies in three dimensions is trapped in a deep spherically symmetric potential V(r):
V(r) = 0 at r < r_{}0
--> ∞ at r ≥ r_{}0
where r_{}0 is a positive constant. The ground state wave function is spherically symmetric, so the radial wave function u(r) satisfies the one-dimensional Schroedinger energy eigenvalue equation (6.17) with the boundary condition u(0) = 0 (eq. 6.18).
Using the known boundary conditions on the radial wave function u(r) at r = 0 and r = r_{}0, find the ground state energy of the particle in this potential well.
Homework Equations
6.17
-\hbar^{2}/2m d^{2}/dr^{2}u(r) + V(r)u(r) = Eu(r)
6.18
u(r) = rψ(r)
The Attempt at a Solution
I know that there is no potential V(r) to deal with, since it is zero inside the well and infinite outside.
I also know that ψ is zero at r_{}0 and finite at zero.
So, that leaves me with finding a solution to
-\hbar^{2}/2m d^{2}/dr^{2}u(r) = Eu(r)
which I am a bit confounded with. Even then, how do I go from a solution to that to finding the ground state energy?
Thanks.