Calculating Centre of Mass for Northern Hemisphere Using Spherical Coordinates

Ted123
Messages
428
Reaction score
0

Homework Statement



Calculate the z-component of the centre of mass for a northern hemisphere of radius R with constant density \rho_0 > 0 using spherical coordinates (r,\theta, \varphi ) defined by:

x(r,\theta, \varphi) = r\sin\theta\cos\varphi \;\;\;\;\;\;0 \leq r < \infty
y(r,\theta, \varphi) = r\sin\theta\sin\varphi \;\;\;\;\;\;\, 0 \leq \theta \leq \pi
z(r,\theta, \varphi) = r\cos\theta \;\;\;\;\;\;\;\;\;\;\;\;\;\; 0 \leq \varphi < 2\pi

Homework Equations



For a solid with density \rho (\bf{r}) occupying a region \cal{R},

z_{cm} = \frac{1}{M} \iiint_{\cal{R}} z \rho (\bf{r})\;dV

where M= \iiint_{\cal{R}} \rho (\bf{r})\;dV

The Attempt at a Solution



I have the solution but I'm wondering why the limits of \theta is [0,\pi /2] for calculating M then it changes to [0,\pi] when calculating z_{cm} ?

M = \iiint _{\cal{R}} \rho_0\;dV = \int_0^R dr \int_0^{\frac{\pi}{2}} d\theta \int_0^{2\pi} d\varphi \; r^2\sin\theta = \frac{2\pi}{3}R^3 \rho_0.

Mz_{cm} = \iiint _{\cal{R}} z \rho_0\;dV = \int_0^R dr \int_0^{\pi} d\theta \int_0^{2\pi} d\varphi \; r\cos\theta r^2\sin\theta = M \frac{3}{8} R.
 
Last edited:
Physics news on Phys.org
have tried carrying through the integration? i think it should be pi/2 as well...
 
Hi Ted123! :wink:

It's wrong …

it must be [0,π/2] for both. :smile:
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top