I How Do SU(2) and SO(3) Relate to Spinors and Vectors in Physics?

Silviu
Messages
612
Reaction score
11
Hello! I want to make sure I understand the relation between this and rotation (mainly between SU(2) and SO(3), but also in general). Also, I am a physics major, so I apologize if my statements are not very rigorous, but I want to make sure I understand the basic underlying concepts. So SU(2) is the double cover of SO(3). Also Spin(3) is the double cover of SO(3). So, SU(2) and Spin(3) are isomorphic. Now I am a bit confused about the objects that these groups act on. If I think of SU(2), they act (in the fundamental representation) on 2 dimensional objects, which are called spinors. Now, if I understand it right, when labeling the representations of SU(2) by j (the value of the angular momentum), if j is half integer it is a spinorial representation, while if j is integer it is a vectorial representation. So for j=1, the object acted upon are 3 dimensional vectors, not spinors? But as we are in SU(2), which are complex matrices, the vectors are complex vectors? So the difference between a complex vector and a tensor, are given by the representation to which they belong to? So a 3 dim object which changes under a 3D representation of SU(2) is a complex vector, while a 2 (or 4, 6 etc) dimensional object changing under a 2D (4, 6 ..) representation of SU(2) is a spinor? Or is it anything deeper that this? Now if we go to higher spin, let's say that a k dimensional object changes under the k-dim representation of Spin(n) and another k-dim object under k-dim representation of Spin(m). Do we decide whether they are spinors or not based on whether that representation is spinorial or vectorial? I.e. a k-dim object on its own can't be called a complex vector or a spinor, unless we know how it transforms? Please let me know if what I said is wrong, and how should I think about all these? Thank you!
 
Physics news on Phys.org
What is a representation of a group?
 
George Jones said:
What is a representation of a group?
A homomorphism, between G and D(G), where to each element of G is associated an element of D(G)
 
Silviu said:
A homomorphism, between G and D(G), where to each element of G is associated an element of D(G)
Whatever D(G) should mean. A representation is a homomorphism ##\varphi\, : \,G\longrightarrow GL(V)## with a representation space, a vector space ##V##. This can be a tangent space, a Euclidean space in case ##G## is a matrix group and many other example. ##V## doesn't even have to be of a certain dimension, or even finite dimensional. So whenever you say representation, you should define ##\varphi ## in a way, because there are really many possible representations.
 
fresh_42 said:
Whatever D(G) should mean. A representation is a homomorphism ##\varphi\, : \,G\longrightarrow GL(V)## with a representation space, a vector space ##V##. This can be a tangent space, a Euclidean space in case ##G## is a matrix group and many other examples. ##V## doesn't even have to be of a certain dimension, or even finite dimensional. So whenever you say representation, you should define ##\varphi ## in a way, because there are really many possible representations.
I understand the general definition, I just want to know if what I stated there is correct and if not, I would like someone to correct me
 
I gave up in the middle of the text as it reads as one big confusion, a mixture of meaningless terms. You switch between groups, representations, physical correspondences and don't really define any of them, e.g. fundamental representation. There is a natural representation if we have matrix groups, namely the vector space they apply to as matrices, but I don't know what fundamental should mean. And so on. I already gave you the link where most of the homo(iso-)morphisms you mentioned are defined. You posted this in a mathematical forum, so the physical meanings might not be of help, at least as long as you don't clearly say what you want to know.
 
fresh_42 said:
I gave up in the middle of the text as it reads as one big confusion, a mixture of meaningless terms. You switch between groups, representations, physical correspondences and don't really define any of them, e.g. fundamental representation. There is a natural representation if we have matrix groups, namely the vector space they apply to as matrices, but I don't know what fundamental should mean. And so on. I already gave you the link where most of the homo(iso-)morphisms you mentioned are defined. You posted this in a mathematical forum, so the physical meanings might not be of help, at least as long as you don't clearly say what you want to know.
I read what you suggested, but it didn't clarified everything. For example, what is the different between a spinor and a complex vector?
 
Silviu said:
For example, what is the different between a spinor and a complex vector?

Every representation of SO(3) give rise naturally to a representation of SU(2). How?
 
George Jones said:
Every representation of SO(3) give rise naturally to a representation of SU(2). How?
Well SO(3) representations are tensorial, so they correspond to integer spin representations of SU(2)
 
  • #10
George Jones said:
Every representation of SO(3) give rise naturally to a representation of SU(2). How?
Shouldn't it be the other way around via ##SU(2) \stackrel{Ad}{\longrightarrow} SO(3)\,##?
 
  • #11
fresh_42 said:
Shouldn't it be the other way around via ##SU(2) \stackrel{Ad}{\longrightarrow} SO(3)\,##?

##SU \left(2\right)/\left\{1,-1\right\}## is isomorphic to ##SO \left(3\right)##, so there is a 2-to-1 homomorphism, ##\mu## say, from ##SU \left(2\right)## onto ##SO \left(3\right)##. If ##\nu: SO \left(3\right) \rightarrow GL\left(V\right)## is representation of ##SO \left(3\right)##, then ##\nu \circ \mu## is a representation of ##SU \left(2\right)##.
 
  • #12
George Jones said:
##SU \left(2\right)/\left\{1,-1\right\}## is isomorphic to ##SO \left(3\right)##, so there is a 2-to-1 homomorphism, ##\mu## say, from ##SU \left(2\right)## onto ##SO \left(3\right)##. If ##\nu: SO \left(3\right) \rightarrow GL\left(V\right)## is representation of ##SO \left(3\right)##, then ##\nu \circ \mu## is a representation of ##SU \left(2\right)##.
Yes, my fault. I should have drawn the diagram. I thought (not really) given (##\nu \circ \mu ##) would define us ##\nu##.
 
Back
Top