Jim Kata
- 197
- 10
the polynomial x^4+8x+12=0 has the Galois group A4. I have all its roots, but can't figure out its splitting field. The roots are
\alpha_1=\sqrt{2}(\sqrt{\cos{(\pi/9)}}+i\sqrt{\cos{(2\pi/9)}}+i\sqrt{\cos{(4\pi/9)}})
\alpha_2=\sqrt{2}(\sqrt{\cos{(\pi/9)}} - i\sqrt{\cos{(2\pi/9)}}-i\sqrt{\cos{(4\pi/9)}})
\alpha_3=\sqrt{2}(-\sqrt{\cos{(\pi/9)}} + i\sqrt{\cos{(2\pi/9)}}-i\sqrt{\cos{(4\pi/9)}})
\alpha_4=\sqrt{2}(-\sqrt{\cos{(\pi/9)}} - i\sqrt{\cos{(2\pi/9)}}+i\sqrt{\cos{(4\pi/9)}})
\alpha_1=\sqrt{2}(\sqrt{\cos{(\pi/9)}}+i\sqrt{\cos{(2\pi/9)}}+i\sqrt{\cos{(4\pi/9)}})
\alpha_2=\sqrt{2}(\sqrt{\cos{(\pi/9)}} - i\sqrt{\cos{(2\pi/9)}}-i\sqrt{\cos{(4\pi/9)}})
\alpha_3=\sqrt{2}(-\sqrt{\cos{(\pi/9)}} + i\sqrt{\cos{(2\pi/9)}}-i\sqrt{\cos{(4\pi/9)}})
\alpha_4=\sqrt{2}(-\sqrt{\cos{(\pi/9)}} - i\sqrt{\cos{(2\pi/9)}}+i\sqrt{\cos{(4\pi/9)}})
Last edited: